L X&))
l- “‘ | —

‘ DOMAIN-DRIVEN SERVICE
. IDENTIFICATION AND DESIGN
‘ WITH
MICROSERVICE AP| PATTERNS
(MAP)

 § Keynote 1
2"d \VVSS Seminar (DevOps and Microservices APIs)

Vienna, August 28, 2019

Prof. Dr. Olaf Zimmermann (ZIO)
Certified Distinguished (Chief/Lead) IT Architect
Institute fir Software, HSR FHO

ozimmerm@hsr.ch

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

Z10s “Research” Objectives (Projects and this Presentation)

1. Share Architectural Knowledge (AK) such as Arch. Decisions and
patterns for state-of-the-art architectural styles and technologies.

Focus here (partially published): Microservices API Patterns (MAP)
Halted: Cloud Computing Decision Model
Completed previous work: SOA Decision Modeling (2006-2011)

2. Make AK Management (AKM) practical and assist architects with tools.
Here (quick overview): Context Mapper, Service Cutter
Also available: AD Mentor, MADR (open source projects)
Emerging: Microservices Domain-Specific Language (MDSL)

3. Help bridge the gap between agile practices and software architecture
along the way.

Here (quick overview): architectural refactoring

Another time: SMART quality attributes, Y-shaped architectural decision
records (in Markdown, code)

M HSR
HOCHSCHULE FUR TECHNIK © INSTITUTE FOR
B E e Page 2 .

FHO Fachhochschule Ostschweiz © Olaf Zim mermann, 20109. SOFTWARE

Available “Micropresentations” (Breakout Session Topics?)

Introduction to
Domain-Driven

Design
Real-World
Service Examples
. (Case Studies)
Service Legend:
Analysis &
DeSign < Experience >

Service_ LooskEing) Architectural -
Gr%nll_Jlarlty Refactoring
ana Loose (to Microservices)
Coupling <

Microservice API
(Research)

Pbs/Qs

O HSR

HOCHSCHULE FUR TECHNIK Page 3 INSTITUTE FOR
B E e SOFTWARE

© Olaf Zimmermann, 2019.

Patterns (MAP)

FHO Fachhochschule Ostschweiz

Agenda Today

1. Microservices Clarification and Level Setting
It's the API contract that matters (not or not only the middleware)

2. Microservice API Patterns (MAP)
Motivation, publication status, website, examples; tools

3. Open Research Questions
... and early/partial solutions to them

https://lvss.swa.univie.ac.at/2019/

O HSR
HOCHSCHULE FUR TECHNIK Page 4

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

https://vss.swa.univie.ac.at/2019/

1. Microservices Clarification and Level Setting
It's the API contract that matters (not or not only the middleware)

2. Microservice API Patterns (MAP)
Motivation, publication status, website, examples; tools

3. Open Research Questions
... and early/partial solutions to them

https://lvss.swa.univie.ac.at/2019/

O HSR
HOCHSCHULE FUR TECHNIK Page 5

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

https://vss.swa.univie.ac.at/2019/

Sample Project: Order Management Application (Telecommunications)

Multi-Channel Order Management SOA in the Telecommunications
Industry (in production since Q1/2005) [OOPSLA 2003] Reference: IBM,

ECOWS 2007

* Functional domain Interface granularity (WSDL contract design)?

Client Web Services Channel
Message- or transport layer encryption ? E 4

?

— Order entry management

Presen-
— Two business processes: tation - | .
new customer, relocation Channel | WS Fagades
enlcobi el — Main SOA drivers: deeper ~_controller [#Ewsor. e ===

Stefan Peuser ¥

fivity Stub 1 —’<i>—' Actiity Stubn @

== automation grade, share Bus
Perspectives on services between domains 5 >"o"

- Process >
Web Services = Service design Layer Transaction boundaries inside process? e /'¢
A PIYINE SOAR WS DL anC | Which BPM/workflow engine to use? | -
— - i i T T = BSF
Top-down from requirement Short Running e poo sen BH
and bottom-up from existing Process Activity =Tt
wholesaler systems Activities | ITRIEMENEEONT vy =
R Implementation n L s b
— Recurring architectural Business o
decisions: services L Message exchange pattern?
« Protocol choices “Application Tran‘c’p?'t p:’tow'? _____
. . Services "
« Transactionality S ___________________ﬁ[_____ S
- Security policies Core Business ﬂ %
. Systems Objects aa
« Interface granularity s e
11 Zurich Research Laboratory © 2007 IBM Corporation
™ HSR X &
HOCHSCHULE FUR TECHNIK © INSTITUTE FOR
Page 6 ®
. . RAPPERSWIL ° SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

A Consolidated Definition of Microservices (“Hexagonions™)

® Microservices architectures evolved from previous incarnations of

Service-Oriented Architectures (SOAS):

Independently deployable, scalable and changeable services,

Request
message
representation

each having a single responsibility
S
More information: Zimmermann, O., Microservices <@
Z A

Modeling business capabilitie
Tenets: Agile Approach to Service Development and '\\
Deployment, Springer Journal of Computer Science / " Adapters
Research and Development (2017) Data Ports
Domain Logic
Often deployed in lightweight containers

Encapsulating their own state, and communicating via message-based

remote APIs (HTTP, queueing) in a loosely coupled fashion
Leveraging polyglot programming and persistence

DevOps practices including decentralized continuous delivery and end-to-

end monitoring (for business agility and domain observability)

O HSR

HOCHSCHULE FUR TECHNIK ©
B E s Page 7 :

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

"Napkin Sketch" of SOA Realizations (Adopted from G. Hohpe)

___________‘_‘—_/——\
.....Discovery . Service
' Registry
_ Service
our focus: Register: Endpoint
Message 5 | \ Application
j Document
> IEI
h | | |
(data) contracts 1 |
RS Rtdbtintad I
< : | %
Conversation () : T :
. Transform
Middleware less popular, Orchesltration Application
often custom build (term I v o
also used in deployment Rules ICroservices:
___________________ and clustering context
. Fa-::;::::l'.;itl""'""""""""""""""""'-Z'Z-.Z'Z-.Z'Z-.Z'Z-.Z'Z:ZZ.ZZ.ZZ:Z'Z:Z'Z-.Z'Z-.Z'Z-.Z'Z-.Z'Z-.Z'Z:Z'Z:Z'Z:Z """"" e B lNSTITUTE FOR
B ceeersw Page 8 e ettt

hhhhhhhhhhhhhhhhhhhhhhh weiz

© Olaf Zimmermann, 2019.

Calls to Service Operations are EIP-style Messages

curl -X GET "http://localhost:B888/customers/rgppBwkpec” -H "accept: #=/x"

3 -t =

" Tlinks": [
{ T — mender Command Receiver
"href": "string", MESSEIQE
"hreflang": "string",
Sample request "media": "s‘l.'_r'ing“,, = gEtLaStTradEPr||:E|:"D|S":|,
"rel": "string",
message "templated": true,
. "title": "string",
(note: PUTs an_d POSTs S | Sayiond |
would look different) : } 7
"::r"ll'thd'ay“: "2819-82-12T89:160:87.370Z",
meityn: "string, Embed nested Wrapper
"customerId": "string", :
"email": "string", ent|ty data')
"firstname": "string",
"lastname": "string", or | Header| Payload | Envelope
n EH- t 3 ": l -
e Link to sparate Y
"city": "string", : E Wrapper
“postal.Cude“: llstr—-i"gllj IreSOurCe?
"streetAddress": "string"
Response] 1
message MphoneNumber™: Fstring", Header| Payload Envelope
"postalCode": "string",
structure nptreetAddress®s mstring" [Header || Payload |
{[...]} -- some JSON (or other MIME type) https://www.enterpriseintegrationpatterns.com/patterns/messaging/CommandMessage.html
o HSR
HOCHSCHULE FUR TECHNIK Page 9 : INSTITUTE FOR
HE RAPPERSWIL -4 SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

https://www.enterpriseintegrationpatterns.com/patterns/messaging/CommandMessage.html

Teaser Question (not from AppArch Lecture Exam at HSR FHO)

® You have been tasked to develop a RESTful HTTP API for a master data
management system that stores customer records and allows sales staff
to report and analyze customer behavior. The system is implemented in
Java and Spring. An additional access channel is RabbitMQ.

® What do you do?

| hand over to my software engineers and students because all | manage
to do these days is attend meetings and write funding proposals.

| annotate the existing Java interfaces with @POST and @GET, as
defined in Spring MVC, JAX-RS etc. and the job is done.

| install an APl gateway product in Kubernetes and hire a sys admin, done.

| design a service layer and write an Open API Specification (f.k.a.
Swagger) contract as well as Data Transfer Objects (DTOs). | worry about
message sizes, transaction boundaries, compensation and coupling while
implementing the contract. To resolve such issues, | create my own novel
solutions. Writing infrastructure code and frameworks is fun after all!

HOCHSCHULE FUR TECHNIK
RAPPERSWIL Page 10

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

1. Microservices Clarification and Level Setting
It's the API contract that matters (not or not only the middleware)

2. Microservice API Patterns (MAP)
Motivation, publication status, website, examples; tools

3. Open Research Questions
... and early/partial solutions to them

https://lvss.swa.univie.ac.at/2019/

O HSR
HOCHSCHULE FUR TECHNIK Page 11

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

https://vss.swa.univie.ac.at/2019/

How to find suited granularities and achieve loose coupling?

context

We have decided to go the SOA and/or microservices way. We use DDD for
domain modeling and agile practices for requirements elicitation.

@ Problems (Industry, Academia)

How to identify an adequate number of API endpoints and operations?

How to design (command/document) message representation structures
so that API clients and API providers are loosely coupled
and meet their (non-)functional requirements IDEALIy?

Which patterns, principles, and practices do you use? Do they work?

/ Microservice APl \

u HSR Patterns (MAP)
INSTITUTE FOR
SOFTWARE

HOCHSCHULE FUR TECHNIK Page 12

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

Introducing... Microservice API Patterns (MAP)

m |dentification Patterns:

DDD as one practice to
find candidate endpoints
and operations

Quality Patterns

How can an API provider achieve
a certain level of quality of the
offered APL, while at the same
time using its available resources
in a cost-effective way?

How can the quality tradeoffs be

communicated and accounted

for?

READ MORE —>

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

/ Microservice APl \

HSR Patterns (MAP)

Foundation Patterns

What type of (sub-)systems and

components are integrated?

Where should an API be

accessible from?

How should it be documented?

Responsibility Patterns

Which is the architectural role
played by each API endpoint and
its operations?

How do these roles and the
resulting responsibilities impact
(micro-)service size and

granularity?

READ MORE =

Structure Patterns

What is an adequate number of
representation elements for

request and response messages?
How are these elements

structured?

How can they be grouped and
annotated with usage

information?

READ MORE =

B Evolution Patterns:

Recently workshopped
(EuroPLoP 2019)

http://microservice-api-patterns.org

Page 13
© Olaf Zimmermann, 2019.

SOFTWARE

INSTITUTE FOR

http://microservice-api-patterns.org/

Exemplary Services in Order Management (Telecomunications)

Computation Function: no read, no write Event Processor: write only (append)
«senvicePorts «senviceforts
TelcoProcessingResource TelcoServiceAdapter
String convertDomesticTolnternationalNurmberFormatiphoneMumber, countryCade) Acknowledgment receiveAddressUpdatedMessage(relocationBEvent)
«servicePort»

«servicePorts TelcoOrderWorkflowCoordinator

TelcolnformationHolderResource

boolean validateAddressicustomerName, address)

OrderDTO createMewPhoneService (customerMame, address)
boolean reservePhoneNumberForRelocation{customeriame, address)
DateTime scheduleTechnicianAppointment(OrderDTO)

OrderDTO relocateCustomericustomerld, address)

CustomerDTO lookupCustomerByldicustormerid)
CustomerDTOCallection lookupCustomerwithFilteriwildcardedMame, otherFilters)

Retrieval Operations: read only Business Activity Processors: read-write (update)

® Endpoints play different roles in microservices architectures
— and their operations fulfill certain responsibilities:

?

Pre- and postconditions differ ?
o

Conversational state? .
Impact on scalability and

Data consistency vs. currentness Changeability?

O HSR
HOCHSCHULE FUR TECHNIK Page 14

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

Microservices API Patterns (MAP): Pattern Index by Category

Responsibility

Endpoint Roles

Processing Resource
@ Information Holder Resource

Version Identifier

1 Semantic Versioning

&)

x4
<+

|

+[-

.u‘.!.

_

Structure

Representation Elements

Atomic Parameter

Atomic Parameter List

Evolution

Two In Production

Aggressive Obsolescence

Experimental Preview

m

vl

vl

Quality Management and Governance

m Rate Limit

API Key

EuroPLoP 2018

¢

Limited Lifetime Guarantee

Eternal Lifetime Guarantee

EuroPLoP 2019

Transactional Data Holder

Master Data Holder

Static Data Holder

Annotated Parameter Collection

Context Representation

|| pagination EUroPLOP 2017

e

N =
Linked Information Holder

Reference Management

Embedded Entity

4

http://microservice-api-patterns.org

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 15

© Olaf Zimmermann, 2019.

INSTITUTE FOR
SOFTWARE

http://microservice-api-patterns.org/

MAP Example: Pagination (1/2)

m Context
An API endpoint and its calls have been identified and specified.

® Problem
How can an API provider optimize a response to an API client that should
deliver large amounts of data with the same structure?

m Forces

Data set size and data access profile (user needs), especially number of
data records required to be available to a consumer

Variability of data (are all result elements identically structured? how often
do data definitions change?)

Memory available for a request (both on provider and on consumer side)
Network capabilities (server topology, intermediaries)
Security and robustness/reliability concerns

/ Microservice APl \

Patterns (MAP)

O HSR
. . HOCHSCHULE FUR TECHNIK Page 16

RAPPERSWIL
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

MAP Example: Pagination (2/2)

m Solution

Divide large response data sets into manageable and easy-to-transmit chunks.
Send only partial results in the first response message and inform the consumer

w

f

how additional results can be obtained/retrieved incrementally.

Process some or all partial responses on the consumer side iteratively as
needed; agree on a request correlation and intermediate/partial results
termination policy on consumer and provider side.

m Variants

Cursor-based vs. offset-based

Legend: Request

(Query)

(Query Result) (from EIP’i

Endpoint API Provider Data Store
? Page 1: {(r1) {r2)} (e.g., RDBMS, NoSQL, EIS)
® Consequences) T R
) — W
E.g. state management required prpes f—j . 62 0
Page 2: {(r3),(r4)} @ {()l ()’ ()
MNext Page: 3 anay
-~ (r10)}
B Know Uses Nl
Fa§e=3
i ; N Bt~ Entenprics Information Systam
Public APIs of social networks || (L= : T
Page 3/3 lanagement System
/ Microservice APl \
- o S 0 S NSTITUTE FOR
" . | I
. . :AD::ES;F‘IJ\:I;-E FUR TECHNIK Page 17 :

FHO Fachhochschule Ostschweiz

© Olaf Zimmermann, 2019.

SOFTWARE

Result Record Set)

Mini-Exercise: Can MAP serve as a map/guide to APl design?

m Let’s have a look at the language organization and selected patterns...

http://microservice-api-patterns.orq

Website public since 2/2019; experimental preview site available to beta testers

Sample patterns (suggestions):

Request Bundle, Embedded Entity, Wish List, APl Key, Two in Production

Microservice APl Patterns HOME CATEGORIES

Microservice API Patterns (MAP) take a broad view on API design and evolution, primarily focussing on
message representations - the payloads exchanged when APIs are called. These payloads have structure.
The representation elements in the payloads differ in their meanings as API endpoints and their
operations have different architectural responsibilities. Furthermore, the chosen representation structures

strongly influence the design time and runtime qualities of an APL

Our Microservice API Patterns capture proven selutions to design problems commeonly encountered when

specifying and implementing message-based APIs in terms of their structure, responsibilities, and quality.

PATTERN FILTERS PATTERN INDEX AUTHORS

Microservice
API Patterns

Ol=f Zimmermann, Mirke Stocker, Uwe Zdun,
Daniel Libke, Cesare Pautasso

>

Open Overview Slide Show in New Window

HSR

HOCHSCHULE FUR TECHNIK Page 18

RAPPERSWIL
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

http://microservice-api-patterns.org/
https://microservice-api-patterns.org/
https://microservice-api-patterns.org/

1. Microservices Clarification and Level Setting
It's the API contract that matters (not or not only the middleware)

2. Microservice API Patterns (MAP)
Motivation, publication status, website, examples; tools

3. Open Research Questions
... and early/partial solutions to them

https://lvss.swa.univie.ac.at/2019/

O HSR
HOCHSCHULE FUR TECHNIK Page 19

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

https://vss.swa.univie.ac.at/2019/

Which BizDevOps issues are still open (community perspective)?

MARCH/APRIL 2017 | IEEE SOFTWARE MAY/JUNE 2018 | IEEE SOFTWARE

m |EEE Software Insights, two-part Interview (2016 to 2017):

System-level tools, context boundary management (MA); teach
large/distributed system design better, or at all (NJ); data analysis/ML for
MSA (JL); biz-MSA isomorphism, team organization(s); autonomy (MA)

m |[EEE Software special Theme Issue on Microservices (2018):

Service Modularization and Refactoring; Service Granularity; Front-end
Integration; Resource Monitoring and Management; Failure, Recovery,
and Self-Repair; Organizational Culture and Coordination

m Gray literature (e.g., blog posts, online developer magazines):

Development: DDD and microservices, refactoring to microservices, ...
Operations: microservices infrastructure architecture patterns, ...

®

Can we come up with an update/a research roadmap here at VSS V2.0?

M HSR
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Page 20 E INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Zim mermann, 20109. SOFTWARE

Critical Success Factors (Gl AK Microservices & DevOps, World Cafe)

m Top Seven (IMHO)

1. Focus («Zielorientierung»), 2. Pragmatism, 3. Faithfulness («Stiltreue»),
4. Patience («langer Atem»), 5. Learn lessons from the past, 6. Continuous
improvement culture, 7. Master of your destiny (no vendor/OSS lock in)

m Balance amount of (de-)centralization and team autonomy
Just enough freedom vs. just enough governance
One DBA per service? Version (test) data (along with code)!
Does each team decide its platform stack? Test for sure.

m Meet Operations Quality Attributes (QAS):
Responsibility (people), accountability
Traceability
Auditability
Reproducability (data, operations at date X)
Self recoverability

B HSR
HOCHSCHULE FUR TECHNIK ©
BN ceeeersw Page 21 :

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

Open Problem: Service Identification/Design ("DDD 4 SOA/MSA”)

Introduction to
Domain-Driven

Design
Real-World
Service Examples
Servi (Case Studies)

ervice

Granularity

and Loose
Coupling

Service Analy5|s Architectural
- & Design Refactorlng

(Modeling) (to Microservices)
Microservice API
Patterns (MAP)

@ Research Questions

Which existing approaches are particularly suited to analyze and design cloud-
native applications and to modernize existing systems (monoliths/megaliths)?
How can these patterns be combined with Microservices API Patterns (MAP)

— and other SOA/microservices design heuristics — to yield a
holistic yet pragmatic service-oriented analysis and design practice?

Q' Which patterns and practices do you apply? What are your experiences?

O HSR
. . HOCHSCHULE FUR TECHNIK Page 22

RAPPERSWIL
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

DDD Applied to (Micro-)Service Design

m M. Ploed is one of the “go-to-guys” here (find him on Speaker Deck)

Applies and extends DDD books by E. Evans and V. Vernon

Microservices

Context Maps
™M

Down
Microservice
v Bounded Contexts
Domain-driven Design o

Michael Pléd, @bitboss Up
INNOQ Aggregates
Reference: JUGS presentation, Bern/CH, Jan 9, 2019
- HSR INSTITUTE FOR
¥ ©
. . :AD:::;th FUR TECHNIK Page 23 :

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019 SOFTWARE

https://speakerdeck.com/mploed
https://speakerdeck.com/mploed/microservices-love-domain-driven-design-version-2
https://speakerdeck.com/mploed/microservices-love-domain-driven-design-version-2

Strategic DDD Context Map: Relationship Example

B [nsurance scenario, source: https://contextmapper.github.io/

Customer Self-Service

Context

Customer/Supplier

Customer
Management Context

o
CO\\\FO"‘M\S

Risk Management

Printing

Context
&

S
u /pl U

U

D

ACL

Partnership

Context

D: Downstream, U: Upstream; ACL: Anti-Corruption Layer, OHS: Open Host Service

Policy Management
Context

Debt Collection

Context

Shared Kernel

O HSR
HOCHSCHULE FUR TECHNIK
. . RAPPERSWIL Page 24

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

SOFTWARE

INSTITUTE FOR

https://contextmapper.github.io/

Context Mapper: A DSL for Strategic DDD

What is Context Mapper?

Context Mapper provides a DSL to create context maps based
on Domain-driven Design (DDD) and its strategic patterns. DDD
and its bounded contexts further provide an approach for
decomposing a domain into multiple bounded contexts. With
our Service Cutter integration we illustrate how the Context
Mapper DSL (CML) can be used as a foundation for structured
service decomposition approaches. Additionally, our context
maps can be transformed into PlantUML diagrams.

CONTEXT
MAPPER

ContextMap {

B Eclipse plugin based on: type = SYSTEM_LANDSCAPE

state = AS IS5

Xtext
contains CargoBookingContext
ANTLR contains VoyagePlanningContext
Sculptor (tactic DDD DSL) contains LocationContext
[| Author S Kapferer CargoBookingContext <-* VoyagePlanningContext : Shared-Kernel
. ¥
Term project HSR FHO
™ HSR
EE :AD::Esﬂcsrwlll.-E FUR TECHNIK Page 25 : INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019 SOFTWARE

https://contextmapper.github.io/
https://contextmapper.github.io/

Proposal: Microsevice Domain-Specific Language (MDSL)

API description SpreadSheetExchangeAPI

[
data type CSWSpreadsheet CSVSheetTab® Data ContraCt
data type CSWsheetTab {"name": V<string>,

"content”: Rows*} / Compact, technology-neutral

data type Rows {"line": ID<imt:>, .
"colunns”:Columnt} Inspired by JSON, regex

data type Column {"positicn": ID<string>,
"header": V<string:?, . .

<<Entity>> "cell”: Cell} B Endpoints and operations

data type Cell {"formula":V<string>

e Elaborate, terminology from
| Ttext™s Vestring} MAP domain model
dpoint t 5 dsheetExch Endpoint .
exposes o / Abstraction of REST resource

operation uploadCsWFile
expecting payload CSVSpreadsheet
delivering payload "successCode”:V<bool:

Abstraction of WS-* concepts

operation downloadCSWFile - PIUS Cllent’ prOVIder’ gateway’
expecting payload ID governance (SLA, version, ...)

delivering payload CSVSpreadsheet
reporting error "SheetNotFound™

API provider SpreadSheetExchangefAPIProvider

offers SpreadSheetExchangeEndpoint How does this notation compare .
o?
APT client SpreadSheetExchangeAPIClient to Swaggel’/JSON SChema
consumes SpreadSheetExchangeEndpoint N¥
and WSDL/XSD?

Reference: https://socadk.github.io/MDSL/index

O HSR
HOCHSCHULE FUR TECHNIK Page 26

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

https://socadk.github.io/MDSL/index

Open Problem: Service Decomposition

On the Criteria To Be
Used in Decomposing
Systems into Modules

D.L. Pamas
Carnegie-Mellon University

Traditional

SOA

Logic

Data

Services

(Case Studies)

efactorini
icroservices),

How Do Committees Invent?
Melvin E. Conway

Copyright 1963, F. D. Thompseoen Publications, Inc.
Reprinted by permission of
Datamation magazine,
where it appeared Apnl, 1968,

@

Research Questions

How can systems be decomposed and cut into services (forward engineering)?
How do the applied criteria and heuristics differ
from software engineering and software architecture “classics”
such as separation of concerns and single responsibility principle?

Which methods and practices do you use? Are they effective and efficient?

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 27

© Olaf Zimmermann, 2019.

INSTITUTE FOR
SOFTWARE

Heuristics that do not suffice (IMHO)

Independent-X
(X = Deployment,
Scaling, Change,
Replacement) Polyglot
Programming and
Persistence

m Two-pizzarule (team size)

IDEAL Cloud

®m Lines of code (in service implementation) Architectures
. Contalnerlzatlon Dgg::'i:::::?
m Size of service implementation in IDE editor "‘"‘"“"e"“" Service °°"ve"f

Momtonng
(au part of DevOps)

?

°- What is wrong with these “metrics” and “best practice”
NY recommendations?

m Simple if-then-else rules

E.g. “If your application needs coarse-grained services, implement a SOA,;
if you require fine ones, go the microservices way” (I did not make this up!)

® Non-technical traits such as “products not projects”
Because context matters, as M. Fowler pointed out at Agile Australia 2018

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL Page 28

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

https://martinfowler.com/articles/agile-aus-2018.html

[HOCHSCHULE FUR TECHNIK Service Cutter (Proc. Of ESOCC 2016, Springer LNCS)

RAPPERSWIL

. . COMPUTER SCIENCE

(_s\, Advisor: Prof. Dr. Olaf Zimmermann
ii ’:
Bachelor Thesis Fall Term 2015 ZUhIke -

Co-Examiner: Prof. Dr. Andreas Rinkel

empowering ideas

Software Lukas Kolbener Michael Gysel Project Partner: Zuhlke Engineering AG

A Software Architect’s Dilemma....

e Con | | Compatibility | I Conatraimts | | Communication
O Step 1: Analyze System senar :

) — Entity-relationship model I | I I
How do | split - Use casers] - EaaEaa
. — System characterizations BTy
my system into - Aggregates (DDD)
services? o o
Coupling information is Pralen

extracted from these artifacts.

Step 2: Calculate Coupling |

— Data fields, operations and artifacts

are nodes. Step 3
— Edges are coupled data fields. Visualize Service Cuts [Sumiee < 8 - i
— Scoring system calculates edge ‘ m . . - a 7,“ -
weights. — Priorities are used to

— Two different graph clustering reflect the context.

Cutter
algorithms calculate candidate — Published Language vt [T
service cuts (=clusters). (DDD) and use case oy
A [.
N7 responsibilities are . o A
N |~ ~ B Fommnk o .~]
AN X shown. | = ™ o B
(e ‘\\ _2) . B
AN A S N i
) ¥ O ot]
"flé*{\:%m\‘ X o -
AN) o . Gompatlbility Criteria
_ Ao@}:&\ \ TN e
\‘\‘_\'y‘ Technologies: e Cansistency Cricaly
Java, Maven, Spring (Core, FE—

Boot, Data, Security, MVC),
Hibernate, Jersey, JHipster,
AngularJS, Bootstrap

A clustered (colors) graph. https://github.com/ServiceCutter

Coupling Criteria (CC) in “Service Cutter” (Ref.. ESOCC 2016)

Cohesiveness

Constraints

Communication

Consistency .-
Constraint [Mutability
Security Network Traffic
Constraint Suitability

Semantic
Proximity Shared Owner
Identity &
Lifecycle Latency
Commonality - o
h J i N
Security
Contextuality

Compatibility
Structural Content
Volatility Volatility
Consistency Availability
Criticality Criticality
Storage Security
Similarity Criticality

Predefined
Service
Constraint

Full descriptions in CC card format: https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

m E.g. Semantic Proximity can be observed if:

Service candidates are accessed within same use case (read/write)

Service candidates are associated in OOAD domain model

® Coupling impact (note that coupling is a relation not a property):

Change management (e.g., interface contract, DDLS)

Creation and retirement of instances (service instance lifecycle)

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 30
© Olaf Zimmermann, 2019.

INSTITU

TE FOR
SOFTWARE

https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

Open Research Problem: Refactoring to Microservices

Traditional SOA

Users

o |@ %

Applications - Services
Logic . .
Data b .
Discrete Applications gacket of Services
(Two or Three Tiers)

@ Research Questions

How to migrate a modular monolith to a services-based cloud application
(a.k.a. cloud migration, brownfield service design)?
Can “micro-migration/modernization” steps be called out?

Q' Which techniques and practices do you employ? Are you content with them?

O HSR
HOCHSCHULE FUR TECHNIK

BN ceeeersw Page 31
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

Code Refactoring vs. Architectural Refactoring

m Refactoring are “small behavior-preserving transformations” = & s

Change Method Signature... Alt+Shift+C

(M . FOW I er 1999) Extract Method... Alt+Shift+M

Extract Local Variable... Alt+Shift+L
Extract Constant...

H RH‘»\CTORH\G Tnline... Alt+Shift+1
m Code refactorings such as “extract method”: S Ly

Operate on Abstract Syntax Tree (AST)

Based on compiler theory, so well understood and B e
automation possible (e.g., in Eclipse Java/C++)

Convert Local Variable to Field...

Exract Superclass...
Extract Interface...

Introduce Parameter Object..

Introduce Indirection...
Introduce Factory.

Introduce Parameter...

Catalog and commentary:
http://refactoring.com/ and https://refactoring.quru/

Encapsulate Field...

REFACTORING

Generalize Declared Type...

Infer Generic Type Arguments.

Migrate JAR File...
Create Script..
Apply Script...
History...

®m Architectural refactorings are different:

Resolve one or more architectural smells, have an impact on quality attributes

Architectural smell: suspicion that architecture is no longer adequate (“good enough”)
under current requirements and constraints (which may differ form original ones)

Are carriers of reengineering knowledge (patterns?)
Can only be partially automated

M HSR
HOCHSCHULE FUR TECHNIK Page 32 : INSTITUTE FOR
B E e - SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

http://refactoring.com/
https://refactoring.guru/

Refactoring to Microservices API Patterns

Computing (2017) 99:129-145 @ CrossMark

| Template and CIOUd refactorlngs DOI 10.1007/500607-016-0520-y
First published @ SummerSoc 2016

Coupling Smells
Smell

AFI clients and their providers can only be deployed and
updated jointly due to a tight coupling

Granularity Smells

Smell

God service with many operations that takes long to update,
test and deploy

Fat Information Holder viclating SRP
Big Ball of Service Mud (doing processing and data access)

Service proliferation syndrome (unmanageable)

Architectural refactoring for the cloud: smm
a decision-centric view on cloud migration

,lll » .lJ-.‘...'

Olaf Zimmermann!

Suggested Refactoring(s)

Downsize data contract by adding Linked
Information Holders replacing Embedded Entities

m Microservices refactorings:

Suggested Refactoring(s) Future work for MAP

Split Service

Work in progress!

Split Information Holder according to data lifetime
and incoming dependencies

Split into Processing Resource and Information
Holder Resource (CQRS for API)

Consolidate different processing responsibility types
into single Business Activity Processor

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

INSTITUTE FOR
SOFTWARE

Page 33
© Olaf Zimmermann, 2019.

https://www.infoq.com/articles/architectural-refactoring
https://www.infoq.com/articles/architectural-refactoring

SummerSoC 2019: Joint Work with University to Pisa

package each serviceina

multiple services (
L separate container
(
L

in one container

—
'

[independent deployability

no APl gateway add APl gateway

NP NI

[horizontal scalability add service discovery

endpoint-based service
interactions

add message router

\

\

(N W VR i W N N W N W W N W A N

add message broker

add circuit breaker

[isolation of failures J (wobbly service interactions
use timeouts
add bulkhead
ESB misuse J (rightsize ESB
split database
[decentralisation (shared persistence [add data manager
merge services
single-layer teams } (split teams by service

Reference: Brogi, A., Neri D., Soldani, J., Zimmermann, O., Design Principles, Architectural Smells and
Refactorings for Microservices: A Multivocal Review. CoRR abs/1906.01553 and Springer SICS (2019, to appear)

M HSR
HOCHSCHULE FUR TECHNIK Page 34 : INSTITUTE FOR
B E e - SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

Key Messages of this Talk

m Itis the API contract (and its implementations) that make or break
projects, not (or not only) middleware and tools

Quality Management and
Governance

Frameworks and infrastructures come and go, APIs stay

> API Key
< Error Report
i Rate Limit

m Microservices API Patterns (MAP) language 3] RatePlan

i, Service Level Agreement v

Public MAP website now available in Version 1.2.1

20+ patterns, sample implementation in public repo, supporting tools

m Context Mapper tool supporting strategic Domain-Driven Driven
Design (DDD) and architectural refactoring

Other tools emerging

m Microservices Domain-Specific Language (MDSL)

data type Customer {"name": V<string>, "address"

Uses MAP as language constructs
Can be generated from DDD bounded contexts

endpoint type CustomerLookup

exposes
operation findCustomer

expecting payload "searchFilter": V<string>

. ResearCh areas: delivering payload "customerList": Customer*

Service modeling, identification, decomposition, refactoring

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL Page 35

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

https://microservice-api-patterns.org/

Teaser Question Revisited

® You have been tasked to develop a RESTful HTTP API for a master data
management system that stores customer records and allows sales staff
to analyze customer behavior. The system is implemented in Java and
Spring. An additional access channel is RabbitMQ.

® What do you do?

| hand over to my software engineers and students because all | manage
to do these days is attend meetings and write funding proposals.

| annotate the existing Java interfaces with @POST and @GET, as
defined in Spring MVC or JAX-RS etc. and the job is done.

| install an APl gateway product in Kubernetes and hire a sys admin, done.

| design a service layer and write an Open API Specification (f.k.a.
Swagger) contract as well as Data Transfer Objects (DTOs). | worry about
message sizes, transaction boundaries, compensation and coupling while
implementing the contract. To resolve such issues, | create my own novel
solutions. Writing infrastructure code and frameworks is fun after all!

| leverage the patterns in MAP during API design and development ©

O HSR
. . HOCHSCHULE FUR TECHNIK Page 36

RAPPERSWIL
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

et

\
\“.'l‘

A

L '
E'
B 2 |

BACKUP CHARTS

'_3 Keynote 1
2"d \VVSS Seminar (DevOps and Microservices APIs)

Vienna, August 28, 2019

Prof. Dr. Olaf Zimmermann (ZIO)
Certified Distinguished (Chief/Lead) IT Architect
Institute ftr Software, HSR FHO

ozimmerm@hsr.ch

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

Sample Project: Financial Services Provider (for Retail Banks)

Reference: IBM, ACM OOPSLA 2004

| Websphers Bl

Web Services Wizardry

with WebSphere Studio
Application Developer

“Creating dynamic e-business with Web
sarvices

“Using the IBM toolset for Web -
sarvices

“introduction to
ViebSphere Studio

ibm.com/redbooks

Platf WSDL
in: e;;r:d ent Java Client .NET ;ient Browser Ofﬁch Q—
IBM
WebSphere® SOAP SOAP SOAP
(pSeries)
generate
Web Services Adapter Layer (<
Java™ API (Dynamic Interface)

]

o Java Backend Connectors &BM WebSphere MQ, CICS®)

5

'

©

=

==

-

generate
o

IBM CICS
(zSeries)

Repository

W Supports — and partially automates — core banking business processes

More than 1000 of business services, each providing a single operation

One database repository, logically partitioned

O HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 38

© Olaf Zimmermann, 2019.

INSTITUTE FOR
SOFTWARE

Exemplary Service Operations in Core Banking

| |Fine (business) Y me—

Fine (technical) “Hello world” of core banking: “Big data” customer profiling (condensed):
int ActivityClassificationEnum
getAccountBalance scoreMonthlyInvestmentActivity
(CustomerId) (CustomerId, Month, Year)

Coarse (technical) Single domain entity, but complex Deep analytics («<Kundengesamtibersicht»):

payload (search/filter capability): BankingProductPortfolioCollection
CustomerDTOSet prepareCustomerAnalysisForMeeting
searchCustomers (CustomerId, Timeframe)

(WildcardedCustomerName,
CustomerSegment, Region)

B Business granularity: %
S 9 i
Functional scope, domain model coverage _ _ N
_ _ Business alignment/agility?
u Technical granularity: Independent deployability?
Structure of message representations a.k.a. Client/server coupling?
Data Transfer Object (DTOS)
M HSR
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Page 39 : INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

SOFTWARE

'SOA Foundations
& Microservices

What is Service-Oriented Architecture (SOA)?

No single definition — “SOA is different things to different people”: —
usiness
» A set of services and operations that a business wants to expose to iomlairtl
o . . . nalys
their customers and partners, or other portions of the organization. !
* Note: no scope implied, enterprise-wide or application!

» An architectural style which requires a service provider, a service
requestor (consumer) and a service contract (a.k.a. client/server).

IT
Architect

* Note: this is where the “business-alignment” becomes real!

» A set of architectural patterns such as service layer (with remote
facades, data transfer objects), enterprise service bus, service
composition (choreography/orchestration), and service registry,
promoting principles such as modularity, layering, and loose

coupling to achieve design goals such as reuse, and flexibility.
* Note: not all patterns have to be used all the time! /
» A programming and deployment model realized by standards,

tools and technologies such as Web services (WSDL/SOAP),
RESTful HTTP, or asynchronous message queuing (AMQP etc.)

Developer,
Administrator

* Note: the “such as” matters (and always has)!

Based on and adapted from: IBM SOA Solution Stack, IBM developerWorks

O HSR
. . HOCHSCHULE FUR TECHNIK Page 40

RAPPERSWIL

INSTITUTE FOR
SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

A Bigger Microservices and MAPing Example: Lakeside Mutual

B https://qithub.com/Microservice-APIl-Patterns/LakesideMutual

wReacty wReacty wVue jsu afode.jsu
Customer Management Frontend Customer Self-Service Frontend Policy Management Frontend Risk Management Client
HTTP + WebSocket HTTP + WebSocket \HTTP HTTP HTTP gRPC
Y Y

#Spring Boots #Spring Boots #Spring Boots ActivelMO wNode.js»
Customer Management Backend Customer Self-Service Backend Policy Management Backend Rizsk Management Server

HTTP

wSpring Boots
Customer Core Spring Boot Admin

O HSR

HOCHSCHULE FUR TECHNIK Page 41

. . RAPPERSWIL
© Olaf Zimmermann, 2019.

FHO Fachhochschule Ostschweiz

INSTITUTE FOR
SOFTWARE

https://github.com/Microservice-API-Patterns/LakesideMutual

Microservices Publications Beyond MAP (2017, 2018)

B Zimmermann, O.: Microservices Tenets — Aqgile Approach to Service Development and Deployment

Springer Comp Sci Res Dev, 2017, http://rdcu.be/mJPz

Microservices in

Practice, Part 2
INSIGHTS

Service Integration and Sustainability

(screen captions — \icroservices in
are hyperlinks)

Practice, Part 1 Microservices are in many ways a
best-practice approach for realizing
Reality Check and Service Design service-oriented architecture.

Cesare Pautasso, Olaf Zimmermann, Mike Amundsen, James Lewis, and Nicolai Josuttis

B Pardon, G., Pautasso, C., Zimmermann, O.: Consistent Disaster Recovery for Microservices: the
Backup, Availability, Consistency (BAC) Theorem

In: IEEE Cloud Computing, 5(1) 2018, pp. 49-59.

B Pahl, C., Jamshidi, P., Zimmermann, O.: Architectural Principles for Cloud Software

In: ACM Trans. on Internet Technology (TOIT), 18 (2) 2018, pp. 17:1-17:23.

B Furda, A., Fidge, C., Zimmermann, O., Kelly, W., Barros, A.: Migrating Enterprise Legacy Source Code
to Microservices: On Multitenancy, Statefulness, and Data Consistency

In: IEEE Software, 35 (3) 2018, pp. 63-72.

O HSR
HOCHSCHULE FUR TECHNIK Page 42

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

https://link.springer.com/article/10.1007/s00450-016-0337-0
http://rdcu.be/mJPz
http://design.inf.usi.ch/publications/2018/bac-theorem
https://www.researchgate.net/publication/317348634_Architectural_Principles_for_Cloud_Software
https://ieeexplore.ieee.org/abstract/document/8186442/
http://ieeexplore.ieee.org/document/7888407/
http://ieeexplore.ieee.org/document/7888407/
http://ieeexplore.ieee.org/document/7819415/
http://ieeexplore.ieee.org/document/7819415/

