
DOMAIN-DRIVEN SERVICE

IDENTIFICATION AND DESIGN

WITH

MICROSERVICE API PATTERNS

(MAP)

Prof. Dr. Olaf Zimmermann (ZIO)

Certified Distinguished (Chief/Lead) IT Architect

Institute für Software, HSR FHO

ozimmerm@hsr.ch

Keynote 1

2nd VSS Seminar (DevOps and Microservices APIs)

Vienna, August 28, 2019

ZIOs “Research” Objectives (Projects and this Presentation)

1. Share Architectural Knowledge (AK) such as Arch. Decisions and

patterns for state-of-the-art architectural styles and technologies.

 Focus here (partially published): Microservices API Patterns (MAP)

 Halted: Cloud Computing Decision Model

 Completed previous work: SOA Decision Modeling (2006-2011)

2. Make AK Management (AKM) practical and assist architects with tools.

 Here (quick overview): Context Mapper, Service Cutter

 Also available: AD Mentor, MADR (open source projects)

 Emerging: Microservices Domain-Specific Language (MDSL)

3. Help bridge the gap between agile practices and software architecture

along the way.

 Here (quick overview): architectural refactoring

 Another time: SMART quality attributes, Y-shaped architectural decision

records (in Markdown, code)

© Olaf Zimmermann, 2019.

Page 2

Available “Micropresentations” (Breakout Session Topics?)

Page 3

© Olaf Zimmermann, 2019.

SOA Foundations

& Microservices

Tenets

Real-World

Service Examples

(Case Studies)
Service

Analysis &

Design

(Modeling)

Microservice API

Patterns (MAP)

Architectural

Refactoring

(to Microservices)

Service

Granularity

and Loose

Coupling

Mythbusting

Patterns

Research

Pbs/Qs

Experience

Opinions

Literature

Analysis

Legend:

Introduction to

Domain-Driven

Design

Agenda Today

1. Microservices Clarification and Level Setting

 It’s the API contract that matters (not or not only the middleware)

2. Microservice API Patterns (MAP)

 Motivation, publication status, website, examples; tools

3. Open Research Questions

 … and early/partial solutions to them

https://vss.swa.univie.ac.at/2019/

© Olaf Zimmermann, 2019.

Page 4

https://vss.swa.univie.ac.at/2019/

Agenda

1. Microservices Clarification and Level Setting

 It’s the API contract that matters (not or not only the middleware)

2. Microservice API Patterns (MAP)

 Motivation, publication status, website, examples; tools

3. Open Research Questions

 … and early/partial solutions to them

https://vss.swa.univie.ac.at/2019/

© Olaf Zimmermann, 2019.

Page 5

https://vss.swa.univie.ac.at/2019/

Sample Project: Order Management Application (Telecommunications)

© Olaf Zimmermann, 2019.

Page 6

Reference: IBM,

ECOWS 2007

A Consolidated Definition of Microservices (“Hexagonions”)

 Microservices architectures evolved from previous incarnations of

Service-Oriented Architectures (SOAs):

 Independently deployable, scalable and changeable services,

each having a single responsibility

 Modeling business capabilities

 Often deployed in lightweight containers

 Encapsulating their own state, and communicating via message-based

remote APIs (HTTP, queueing) in a loosely coupled fashion

 Leveraging polyglot programming and persistence

 DevOps practices including decentralized continuous delivery and end-to-

end monitoring (for business agility and domain observability)

© Olaf Zimmermann, 2019.

Page 7

More information: Zimmermann, O., Microservices

Tenets: Agile Approach to Service Development and

Deployment, Springer Journal of Computer Science

Research and Development (2017)

"Napkin Sketch" of SOA Realizations (Adopted from G. Hohpe)

Page 8

© Olaf Zimmermann, 2019.

Our focus:

Microservices!

Middleware less popular,

often custom build (term

also used in deployment

and clustering context)

Optional (then

and now)

(data) contracts

Calls to Service Operations

Page 9

© Olaf Zimmermann, 2019.

PayloadHeader
Envelope

Header Payload

Wrapper

Payload

Header Payload

Wrapper

Envelope

https://www.enterpriseintegrationpatterns.com/patterns/messaging/CommandMessage.html

Sample request

message

(note: PUTs and POSTs

would look different)

Response

message

structure

{[…]}

{[…]}

are EIP-style Messages

{[…]} -- some JSON (or other MIME type)

+/-?

Embed nested

entity data?

or

Link to sparate

iresource?

https://www.enterpriseintegrationpatterns.com/patterns/messaging/CommandMessage.html

Teaser Question (not from AppArch Lecture Exam at HSR FHO)

 You have been tasked to develop a RESTful HTTP API for a master data

management system that stores customer records and allows sales staff

to report and analyze customer behavior. The system is implemented in

Java and Spring. An additional access channel is RabbitMQ.

 What do you do?

a) I hand over to my software engineers and students because all I manage

to do these days is attend meetings and write funding proposals.

b) I annotate the existing Java interfaces with @POST and @GET, as

defined in Spring MVC, JAX-RS etc. and the job is done.

c) I install an API gateway product in Kubernetes and hire a sys admin, done.

d) I design a service layer and write an Open API Specification (f.k.a.

Swagger) contract as well as Data Transfer Objects (DTOs). I worry about

message sizes, transaction boundaries, compensation and coupling while

implementing the contract. To resolve such issues, I create my own novel

solutions. Writing infrastructure code and frameworks is fun after all!

e) ___ ?

© Olaf Zimmermann, 2019.

Page 10

Agenda

1. Microservices Clarification and Level Setting

 It’s the API contract that matters (not or not only the middleware)

2. Microservice API Patterns (MAP)

 Motivation, publication status, website, examples; tools

3. Open Research Questions

 … and early/partial solutions to them

https://vss.swa.univie.ac.at/2019/

© Olaf Zimmermann, 2019.

Page 11

https://vss.swa.univie.ac.at/2019/

How to find suited granularities and achieve loose coupling?

Page 12

© Olaf Zimmermann, 2019.

Context

We have decided to go the SOA and/or microservices way. We use DDD for

domain modeling and agile practices for requirements elicitation.

Problems (Industry, Academia)

How to identify an adequate number of API endpoints and operations?

How to design (command/document) message representation structures

so that API clients and API providers are loosely coupled

and meet their (non-)functional requirements IDEALly?

Which patterns, principles, and practices do you use? Do they work?

Introducing… Microservice API Patterns (MAP)

 Identification Patterns:

 DDD as one practice to

find candidate endpoints

and operations

 Evolution Patterns:

 Recently workshopped

(EuroPLoP 2019)

© Olaf Zimmermann, 2019.

Page 13

http://microservice-api-patterns.org

http://microservice-api-patterns.org/

Exemplary Services in Order Management (Telecomunications)

 Endpoints play different roles in microservices architectures

– and their operations fulfill certain responsibilities:

 Pre- and postconditions differ

 Conversational state?

 Data consistency vs. currentness

© Olaf Zimmermann, 2019.

Page 14

Impact on scalability and

changeability?

Computation Function: no read, no write Event Processor: write only (append)

Business Activity Processors: read-write (update)Retrieval Operations: read only

Microservices API Patterns (MAP): Pattern Index by Category

Page 15

© Olaf Zimmermann, 2019.

http://microservice-api-patterns.org

EuroPLoP 2019

EuroPLoP 2017

EuroPLoP 2018

http://microservice-api-patterns.org/

MAP Example: Pagination (1/2)

 Context

 An API endpoint and its calls have been identified and specified.

 Problem

 How can an API provider optimize a response to an API client that should

deliver large amounts of data with the same structure?

 Forces

 Data set size and data access profile (user needs), especially number of

data records required to be available to a consumer

 Variability of data (are all result elements identically structured? how often

do data definitions change?)

 Memory available for a request (both on provider and on consumer side)

 Network capabilities (server topology, intermediaries)

 Security and robustness/reliability concerns

Page 16

© Olaf Zimmermann, 2019.

MAP Example: Pagination (2/2)

 Solution

 Divide large response data sets into manageable and easy-to-transmit chunks.

 Send only partial results in the first response message and inform the consumer

how additional results can be obtained/retrieved incrementally.

 Process some or all partial responses on the consumer side iteratively as

needed; agree on a request correlation and intermediate/partial results

termination policy on consumer and provider side.

 Variants

 Cursor-based vs. offset-based

 Consequences

 E.g. state management required

 Know Uses

 Public APIs of social networks

Page 17

© Olaf Zimmermann, 2019.

Mini-Exercise: Can MAP serve as a map/guide to API design?

 Let’s have a look at the language organization and selected patterns…

 http://microservice-api-patterns.org

 Website public since 2/2019; experimental preview site available to beta testers

 Sample patterns (suggestions):

 Request Bundle, Embedded Entity, Wish List, API Key, Two in Production

 Questions:

 Do you agree with our hypothesis: knowledge on API design is beneficial?

 Do names and icons work for you/make sense/communicate the essence?

 Would you have expected different patterns?

 How about template and category structure?

 E.g. quality category

 E.g. implementation hints (not on website, but in EuroPLoP papers)

 Which coupling criteria matter for (micro-)service decomposition?

© Olaf Zimmermann, 2019.

Page 18

http://microservice-api-patterns.org/
https://microservice-api-patterns.org/
https://microservice-api-patterns.org/

Agenda

1. Microservices Clarification and Level Setting

 It’s the API contract that matters (not or not only the middleware)

2. Microservice API Patterns (MAP)

 Motivation, publication status, website, examples; tools

3. Open Research Questions

 … and early/partial solutions to them

https://vss.swa.univie.ac.at/2019/

© Olaf Zimmermann, 2019.

Page 19

https://vss.swa.univie.ac.at/2019/

Which BizDevOps issues are still open (community perspective)?

 IEEE Software Insights, two-part Interview (2016 to 2017):

 System-level tools, context boundary management (MA); teach

large/distributed system design better, or at all (NJ); data analysis/ML for

MSA (JL); biz-MSA isomorphism, team organization(s); autonomy (MA)

 IEEE Software special Theme Issue on Microservices (2018):

 Service Modularization and Refactoring; Service Granularity; Front-end

Integration; Resource Monitoring and Management; Failure, Recovery,

and Self-Repair; Organizational Culture and Coordination

 Gray literature (e.g., blog posts, online developer magazines):

 Development: DDD and microservices, refactoring to microservices, …

 Operations: microservices infrastructure architecture patterns, …

Can we come up with an update/a research roadmap here at VSS V2.0?

© Olaf Zimmermann, 2019.

Page 20

Critical Success Factors (GI AK Microservices & DevOps, World Cafe)

 Top Seven (IMHO)

 1. Focus («Zielorientierung»), 2. Pragmatism, 3. Faithfulness («Stiltreue»),

4. Patience («langer Atem»), 5. Learn lessons from the past, 6. Continuous

improvement culture, 7. Master of your destiny (no vendor/OSS lock in)

 Balance amount of (de-)centralization and team autonomy

 Just enough freedom vs. just enough governance

 One DBA per service? Version (test) data (along with code)!

 Does each team decide its platform stack? Test for sure.

 Meet Operations Quality Attributes (QAs):

 Responsibility (people), accountability

 Traceability

 Auditability

 Reproducability (data, operations at date X)

 Self recoverability

© Olaf Zimmermann, 2019.

Page 21

Open Problem: Service Identification/Design (“DDD 4 SOA/MSA”)

Page 22

Research Questions

Which existing approaches are particularly suited to analyze and design cloud-

native applications and to modernize existing systems (monoliths/megaliths)?

How can these patterns be combined with Microservices API Patterns (MAP)

– and other SOA/microservices design heuristics – to yield a

holistic yet pragmatic service-oriented analysis and design practice?

Which patterns and practices do you apply? What are your experiences?

© Olaf Zimmermann, 2019.

DDD Applied to (Micro-)Service Design

 M. Ploed is one of the “go-to-guys” here (find him on Speaker Deck)

 Applies and extends DDD books by E. Evans and V. Vernon

© Olaf Zimmermann, 2019.

Page 23

Reference: JUGS presentation, Bern/CH, Jan 9, 2019

https://speakerdeck.com/mploed
https://speakerdeck.com/mploed/microservices-love-domain-driven-design-version-2
https://speakerdeck.com/mploed/microservices-love-domain-driven-design-version-2

Strategic DDD Context Map: Relationship Example

 Insurance scenario, source: https://contextmapper.github.io/

Page 24

© Olaf Zimmermann, 2019.

D: Downstream, U: Upstream; ACL: Anti-Corruption Layer, OHS: Open Host Service

https://contextmapper.github.io/

Context Mapper: A DSL for Strategic DDD

 Eclipse plugin based on:

 Xtext

 ANTLR

 Sculptor (tactic DDD DSL)

 Author: S. Kapferer

 Term project HSR FHO

© Olaf Zimmermann, 2019.

Page 25

https://contextmapper.github.io/
https://contextmapper.github.io/

Proposal: Microsevice Domain-Specific Language (MDSL)

Page 26

How does this notation compare

to Swagger/JSON Schema

and WSDL/XSD?

© Olaf Zimmermann, 2019.

 Data contract

 Compact, technology-neutral

 Inspired by JSON, regex

 Endpoints and operations

 Elaborate, terminology from

MAP domain model

 Abstraction of REST resource

 Abstraction of WS-* concepts

 Plus client, provider, gateway,

governance (SLA, version, …)

Reference: https://socadk.github.io/MDSL/index

https://socadk.github.io/MDSL/index

Open Problem: Service Decomposition

Page 27

Research Questions

How can systems be decomposed and cut into services (forward engineering)?

How do the applied criteria and heuristics differ

from software engineering and software architecture “classics”

such as separation of concerns and single responsibility principle?

Which methods and practices do you use? Are they effective and efficient?

© Olaf Zimmermann, 2019.

Heuristics that do not suffice (IMHO)

 Two-pizza rule (team size)

 Lines of code (in service implementation)

 Size of service implementation in IDE editor

 Simple if-then-else rules

 E.g. “If your application needs coarse-grained services, implement a SOA;

if you require fine ones, go the microservices way” (I did not make this up!)

 Non-technical traits such as “products not projects”

 Because context matters, as M. Fowler pointed out at Agile Australia 2018

© Olaf Zimmermann, 2019.

Page 28

What is wrong with these “metrics” and “best practice”

recommendations?

https://martinfowler.com/articles/agile-aus-2018.html

 Entity-relationship model

 Use cases

 System characterizations

 Aggregates (DDD)

Coupling information is

extracted from these artifacts.

Service Cutter (Proc. Of ESOCC 2016, Springer LNCS)

Advisor: Prof. Dr. Olaf Zimmermann

Co-Examiner: Prof. Dr. Andreas Rinkel

Project Partner: Zühlke Engineering AG

Bachelor Thesis Fall Term 2015

Software Lukas Kölbener Michael Gysel

A Software Architect’s Dilemma….

Step 1: Analyze System

Step 2: Calculate Coupling

Step 3:

Visualize Service Cuts

How do I split

my system into

services?

 Data fields, operations and artifacts

are nodes.

 Edges are coupled data fields.

 Scoring system calculates edge

weights.

 Two different graph clustering

algorithms calculate candidate

service cuts (=clusters).

A clustered (colors) graph.

Technologies:

Java, Maven, Spring (Core,

Boot, Data, Security, MVC),

Hibernate, Jersey, JHipster,

AngularJS, Bootstrap

The catalog of 16 coupling criteria

https://github.com/ServiceCutterA clustered (colors) graph.

 Priorities are used to

reflect the context.

 Published Language

(DDD) and use case

responsibilities are

shown.

Coupling Criteria (CC) in “Service Cutter” (Ref.: ESOCC 2016)

 E.g. Semantic Proximity can be observed if:

 Service candidates are accessed within same use case (read/write)

 Service candidates are associated in OOAD domain model

 Coupling impact (note that coupling is a relation not a property):

 Change management (e.g., interface contract, DDLs)

 Creation and retirement of instances (service instance lifecycle)

Page 30

Full descriptions in CC card format: https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

© Olaf Zimmermann, 2019.

https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

Open Research Problem: Refactoring to Microservices

Page 31

Research Questions

How to migrate a modular monolith to a services-based cloud application

(a.k.a. cloud migration, brownfield service design)?

Can “micro-migration/modernization” steps be called out?

Which techniques and practices do you employ? Are you content with them?

© Olaf Zimmermann, 2019.

Code Refactoring vs. Architectural Refactoring

 Refactoring are “small behavior-preserving transformations”

(M. Fowler 1999)

 Code refactorings such as “extract method”:

 Operate on Abstract Syntax Tree (AST)

 Based on compiler theory, so well understood and

automation possible (e.g., in Eclipse Java/C++)

 Catalog and commentary:

 http://refactoring.com/ and https://refactoring.guru/

 Architectural refactorings are different:

 Resolve one or more architectural smells, have an impact on quality attributes

 Architectural smell: suspicion that architecture is no longer adequate (“good enough”)

under current requirements and constraints (which may differ form original ones)

 Are carriers of reengineering knowledge (patterns?)

 Can only be partially automated

© Olaf Zimmermann, 2019.

Page 32

http://refactoring.com/
https://refactoring.guru/

Architectural Refactoring: [Name]

Context (viewpoint, refinement level):

• […]

Quality attributes and stories (forces):

• […]

Smell (refactoring driver):

• […]

Architectural decision(s) to be revisited:

• […]

Refactoring (solution sketch/evolution outline):

• […]

Affected components and connectors (if modelled explicitly):

• […]

Execution tasks (in agile planning tool and/or full-fledged design method):

• […]

Refactoring to Microservices API Patterns

 Template and cloud refactorings

 First published @ SummerSoc 2016

 Summary: IEEE Software, InfoQ

Page 33

Work in progress!

© Olaf Zimmermann, 2019.

 Microservices refactorings:

 Future work for MAP

https://www.infoq.com/articles/architectural-refactoring
https://www.infoq.com/articles/architectural-refactoring

SummerSoC 2019: Joint Work with University to Pisa

Reference: Brogi, A., Neri D., Soldani, J., Zimmermann, O., Design Principles, Architectural Smells and

Refactorings for Microservices: A Multivocal Review. CoRR abs/1906.01553 and Springer SICS (2019, to appear)

© Olaf Zimmermann, 2019.

Page 34

Key Messages of this Talk

 It is the API contract (and its implementations) that make or break

projects, not (or not only) middleware and tools

 Frameworks and infrastructures come and go, APIs stay

 Microservices API Patterns (MAP) language

 Public MAP website now available in Version 1.2.1

 20+ patterns, sample implementation in public repo, supporting tools

 Context Mapper tool supporting strategic Domain-Driven Driven

Design (DDD) and architectural refactoring

 Other tools emerging

 Microservices Domain-Specific Language (MDSL)

 Uses MAP as language constructs

 Can be generated from DDD bounded contexts

 Research areas:

 Service modeling, identification, decomposition, refactoring

© Olaf Zimmermann, 2019.

Page 35

https://microservice-api-patterns.org/

Teaser Question Revisited

 You have been tasked to develop a RESTful HTTP API for a master data

management system that stores customer records and allows sales staff

to analyze customer behavior. The system is implemented in Java and

Spring. An additional access channel is RabbitMQ.

 What do you do?

a) I hand over to my software engineers and students because all I manage

to do these days is attend meetings and write funding proposals.

b) I annotate the existing Java interfaces with @POST and @GET, as

defined in Spring MVC or JAX-RS etc. and the job is done.

c) I install an API gateway product in Kubernetes and hire a sys admin, done.

d) I design a service layer and write an Open API Specification (f.k.a.

Swagger) contract as well as Data Transfer Objects (DTOs). I worry about

message sizes, transaction boundaries, compensation and coupling while

implementing the contract. To resolve such issues, I create my own novel

solutions. Writing infrastructure code and frameworks is fun after all!

e) I leverage the patterns in MAP during API design and development 

© Olaf Zimmermann, 2019.

Page 36

BACKUP CHARTS

Prof. Dr. Olaf Zimmermann (ZIO)

Certified Distinguished (Chief/Lead) IT Architect

Institute für Software, HSR FHO

ozimmerm@hsr.ch

Keynote 1

2nd VSS Seminar (DevOps and Microservices APIs)

Vienna, August 28, 2019

Sample Project: Financial Services Provider (for Retail Banks)

 Supports – and partially automates – core banking business processes

 More than 1000 of business services, each providing a single operation

 One database repository, logically partitioned

© Olaf Zimmermann, 2019.

Page 38

Reference: IBM, ACM OOPSLA 2004

Exemplary Service Operations in Core Banking

Fine (business) Coarse (business)

Fine (technical) “Hello world” of core banking:
int

getAccountBalance

(CustomerId)

“Big data” customer profiling (condensed):
ActivityClassificationEnum

scoreMonthlyInvestmentActivity

(CustomerId, Month, Year)

Coarse (technical) Single domain entity, but complex

payload (search/filter capability):
CustomerDTOSet

searchCustomers

(WildcardedCustomerName,

CustomerSegment, Region)

Deep analytics («Kundengesamtübersicht»):
BankingProductPortfolioCollection

prepareCustomerAnalysisForMeeting

(CustomerId, Timeframe)

 Business granularity:

 Functional scope, domain model coverage

 Technical granularity:

 Structure of message representations a.k.a.

Data Transfer Object (DTOs)

© Olaf Zimmermann, 2019.

Page 39

Business alignment/agility?

Independent deployability?

Client/server coupling?

What is Service-Oriented Architecture (SOA)?

Page 40

© Olaf Zimmermann, 2019.

No single definition – “SOA is different things to different people”:

 A set of services and operations that a business wants to expose to

their customers and partners, or other portions of the organization.

• Note: no scope implied, enterprise-wide or application!

 An architectural style which requires a service provider, a service

requestor (consumer) and a service contract (a.k.a. client/server).

• Note: this is where the “business-alignment” becomes real!

 A set of architectural patterns such as service layer (with remote

facades, data transfer objects), enterprise service bus, service

composition (choreography/orchestration), and service registry,

promoting principles such as modularity, layering, and loose

coupling to achieve design goals such as reuse, and flexibility.

• Note: not all patterns have to be used all the time!

 A programming and deployment model realized by standards,

tools and technologies such as Web services (WSDL/SOAP),

RESTful HTTP, or asynchronous message queuing (AMQP etc.)

• Note: the “such as” matters (and always has)!

Business

Domain

Analyst

IT

Architect

Developer,

Administrator

Based on and adapted from: IBM SOA Solution Stack, IBM developerWorks

A Bigger Microservices and MAPing Example: Lakeside Mutual

 https://github.com/Microservice-API-Patterns/LakesideMutual

© Olaf Zimmermann, 2019.

Page 41

https://github.com/Microservice-API-Patterns/LakesideMutual

Microservices Publications Beyond MAP (2017, 2018)

 Zimmermann, O.: Microservices Tenets – Agile Approach to Service Development and Deployment

 Springer Comp Sci Res Dev, 2017, http://rdcu.be/mJPz

 Pardon, G., Pautasso, C., Zimmermann, O.: Consistent Disaster Recovery for Microservices: the

Backup, Availability, Consistency (BAC) Theorem

 In: IEEE Cloud Computing, 5(1) 2018, pp. 49-59.

 Pahl, C., Jamshidi, P., Zimmermann, O.: Architectural Principles for Cloud Software

 In: ACM Trans. on Internet Technology (TOIT), 18 (2) 2018, pp. 17:1-17:23.

 Furda, A., Fidge, C., Zimmermann, O., Kelly, W., Barros, A.: Migrating Enterprise Legacy Source Code

to Microservices: On Multitenancy, Statefulness, and Data Consistency

 In: IEEE Software, 35 (3) 2018, pp. 63-72.

© Olaf Zimmermann, 2019.

Page 42

(screen captions

are hyperlinks)

https://link.springer.com/article/10.1007/s00450-016-0337-0
http://rdcu.be/mJPz
http://design.inf.usi.ch/publications/2018/bac-theorem
https://www.researchgate.net/publication/317348634_Architectural_Principles_for_Cloud_Software
https://ieeexplore.ieee.org/abstract/document/8186442/
http://ieeexplore.ieee.org/document/7888407/
http://ieeexplore.ieee.org/document/7888407/
http://ieeexplore.ieee.org/document/7819415/
http://ieeexplore.ieee.org/document/7819415/

