
What is Istio ?

Abdellfetah
SGHIOUAR
Strategic Cloud Engineer @Google Stockholm
Twitter: boredabdel@

Today we’re going to cover the
why, what, and how of Istio

Why Istio ?

Containers?

Great!

Kubernetes?

Also Great!

But microservices deployments are hard

How do you go from a bunch
of services...

...to a well organized and
functioning deployment?

Canary releases require
infrastructure scaling

What makes microservices difficult?

Can’t control who accesses
what service

Can’t control traffic using
L7 attributes

Don’t know if you’re talking
to the right service

Digging into high latency
drivers takes work

Can’t track requests from
start to finish

What is Istio?

How does Istio help?

Uniform
observability

Policy driven
security

Operational
agility

How does Istio help?

Security

Secure access and
communications
between some or all
services

Telemetry

Examine everything
happening with your
services with little to
no instrumentation

Traffic

Manage the flow of
traffic into, out of,
and within your
complex deployments

Istio at a
glance

Istio
sidecar
proxy

Istio
data
plane

Istio
control
plane

What does
Istio do?

Observing services

Get automatic

tracing, monitoring,

and logging of all your

services.

Connecting services

Using VirtualService,

DestinationRule,

Gateway, and

ServiceEntry objects,

Istio helps you with:

Traffic splitting Traffic steering Fault injection

Circuit breaking Egress control

Connecting
services

Traffic splitting and

traffic steering

Connecting
services

Fault injection and

circuit breaking

frontend backend

Inject delay, retry, or connection rules.

Rules can match specific conditions and
be restricted to a percentage of

requests.

Securing services
Automatically secure your services through managed

authentication, authorization, and encryption of

communication between services.

Traffic encryption Service auth Access policiesAuditing controls

Controlling
and securing
services

Apply broad or fine-grained

security policies to some or all

of your workloads

How do you
put Istio to
work?

Including the sidecar proxy in your Pods

manually injecting the sidecar proxy
kubectl apply -f <(istioctl kube-inject -f deployment.yaml)

auto-injecting the sidecar proxy
kubectl label ns default istio-injection=enabled

Traffic
management

Simple deployment

This is a simple

frontend/backend

deployment. We want to canary

test v2 of the backend. Each

backend provides slightly

different functionality.

weather
frontend

weather
backend v1

weather
backend v2

Recap: Traffic splitting

Distributing traffic

Without sidecar proxies, how

can we use Istio’s traffic

distribution? The frontend

should hit v1 90% of the time,

and v2 10% of the time.

weather
frontend

weather
backend v1

weather
backend v2

90%

10%

Default Kubernetes
round-robin routing

weather
frontend

weather
backend v1

weather
backend v2

50%

50%

Traffic policy for
backend
deployment

Create a DestinationRule

policy for weather-backend

- in this case, creating named

subsets to send traffic to

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: weather-backend-destination
spec:
 host: weather-backend
 subsets:
 - name: single
 labels:
 version: single
 - name: multiple
 labels:
 version: multiple

Routing traffic
from ingress

Create routing rules using a

VirtualService, telling

the Gateway object

where/how to distribute

traffic

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: weather-backend-service
spec:
 hosts:
 - "*"
 gateways:
 - weather-backend-gateway
 http:
 - match:
 - uri:
 exact: /api/weather
 route:
 - destination:
 host: weather-backend
 subset: single
 port:
 number: 5000
 weight: 90
 - destination:
 host: weather-backend
 subset: multiple
 port:
 number: 5000
 weight: 10

Securing
services

Securing a subset
of services

How do you use Istio to

slowly deploy mTLS across

services, while also keeping

legacy clients in mind?

service

weather
frontend

weather
backend

namespace: legacy namespace: secure
Istio-injection: enabled

Rolling out mTLS

1. Deploy Istio with PERMISSIVE mTLS settings

2. Apply Policy for Service A with PERMISSIVE mode

3. Apply DestinationRule for Service A with MUTUAL mode

a. Services with istio-proxy encrypt traffic using mTLS

b. Services without istio-proxy don’t encrypt traffic

4. When ready, apply Policy for Service A with STRICT mode

Apply Policy with PERMISSIVE mode

apiVersion: auth.istio.io/v1alpha1
kind: Policy
metadata:
 name: mtls-backend
 namespace: secure
spec:
 targets:
 - name: weather-backend
 peers:
 - mtls:
 mode: PERMISSIVE

service

weather
frontend

weather
backend

namespace: legacy namespace: secure
Istio-injection: enabled

PERMISSIVE

apiVersion: net.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: mtls-mutual
spec:
 host: weather-backend.secure
 trafficPolicy:
 tls:
 mode: ISTIO_MUTUAL

service

weather
frontend

weather
backend

namespace: legacy namespace: secure
Istio-injection: enabled

MUTUAL

Apply DestinationRule with MUTUAL mode

PERMISSIVE

apiVersion: auth.istio.io/v1alpha1
kind: Policy
metadata:
 name: mtls-backend
 namespace: secure
spec:
 targets:
 - name: weather-backend
 peers:
 - mtls:
 mode: STRICT

service

weather
frontend

weather
backend

namespace: legacy namespace: secure
Istio-injection: enabled

Apply Policy with STRICT mode

MUTUAL

PERMISSIVE

Gathering
telemetry

Telemetry for free

Without any instrumentation, Istio captures a

predefined set of metrics, request traces, and

service logs - and forwards them to the

configured adapters.

Istio built-in metrics

Request Count
Incremented for every request handled

Request Duration
Duration of the request

Request Size
Size of the HTTP request body

Response Size
Size of the HTTP response body

TCP Byte Sent
Total bytes sent during response

TCP Byte Received
Total bytes received during request

Where do you
go from here ?

Some light reading to get you started

Service Mesh Era blog posts (conceptual and practical intros)

Incremental Istio: Traffic Management

mTLS Migration

Istio Concepts

github.com/crscmnky/weatherinfo

github.com/crcsmnky/next19-incremental-istio

https://cloud.google.com/blog/search;query=service%20mesh%20era;paginate=25;order=newest
https://istio.io/blog/2018/incremental-traffic-management/
https://istio.io/docs/tasks/security/mtls-migration/
https://istio.io/docs/concepts/
http://github.com/crscmnky/weatherinfo
http://github.com/crcsmnky/next19-incremental-istio

Thank you!

