Serverless Cloud Computing Beyond FaaS:
Programming Models and Abstractions

Philipp Haller

KTH Royal Institute of Technology
Stockholm, Sweden

2nd Vienna Software Seminar (VSS)
Vienna, Austria, Aug 29, 2019

Philipp Haller



Background

= 2005-2014 Scala language team
- 2012-2014 Typesafe, Inc.

= (Co-author Scala language specification

= 2019: ACM SIGPLAN Programming Languages Software Award for Scala

Core contributors:
Martin Odersky, Adriaan Moors, Aleksandar Prokopec, Heather Miller,
lulian Dragos, Nada Amin, Philipp Haller, Sebastien Doeraene, Tiark Rompf

Philipp Haller 2



Scala Actors and Akka

m
A
- Philipp Haller creates Scala Actors (the original standard library actors). His work
JUN21 . becomes a major influence to Akka and the main reason for Jonas Bonér to choose Scala
2006 " as the platform for Akka.
First commit: ht
Scala Actors used, e.g.,
in core message queue
WActon that Unify Threads and .
Events system of Twitter:
Eatos Vi an Mt AL
Presensed ae |nlemat Il Conferenc e ) or
anguages, Paphos Philipp Haller publishes his influential
JUNS . | N | N ot paper on Scala’s Actors; ‘Actors that
2007 sene Unify Threads and Events’.
M v nd
are ofta e p3 am apolia an ."‘"" ( Obama sworn in as 44th President
[
- ) . . g [\
0OCT13 Jonas gets seriously interested in Erlang. E i
2007 Blog post: g LA A A
] : , - it 2 \ [~ \JW
ERLANG er.com/2007/10/30/interview-w I=—tc e

I;E‘Cnlg_ B B B B . ' Scala ‘chl)::zzzirtstinkeringwith Scala Actors. e— u —
https://www.lightbend.com/akka-five-year-anniversary



https://www.lightbend.com/akka-five-year-anniversary

The use of actors is common in industry
* Distributed Actors

FORTNITE, (&
m = @ WhatsA;:{pL-q

ERLANG ERLANG

Slide from:
Meiklejohn et al.
“Partisan” at

\USENIX ATC ‘19

Philipp Haller



Ongoing work
= Type systems

= [aCasa: lightweight affine types and object capabilities in Scala
[Haller & Loiko 2016]

= Static reasoning about capabilities and resources

= [ypes for safe distribution

= (Closures [Miller et al. 2014], eventual consistency
[Zhao & Haller 2019]

= Concurrent and distributed programming

= Deterministic concurrency [Haller et al. 2016], function passing
[Haller et al. 2018], asynchronous streams [Haller & Miller 2019]

Philipp Haller 5



Cloud computing

= Public cloud infrastructure integral part of
numerous large-scale, commercial applications.

= Amazon Web Services introduced > 12 years ago.

— Support for enterprise services: databases,
queueing systems, object storage, etc.

So, cloud computing is now essentially
a legacy enterprise service, right?

Philipp Haller



Unused potential?

So, cloud computing is now essentially
a legacy enterprise service, right?

The cloud is...

“the biggest assemblage of data capacity and
distributed computing power ever available to
the general public, managed as a service.” [1]

[1] Hellerstein et al. Serverless Computing: One Step Forward,
Two Steps Back. CIDR 2019

Philipp Haller 7



Vhat is Serverless Computing?

Example event:
“a commit was

pushed to branch X
of repository Y.”

= Developers upload their code (functions) to the cloud.

= Cloud platform executes these functions in response

to events.
. L Pay per use!
= No need for operating or provisioning servers. yP
“Serverless” = Users only pay for compute resources used when their
code is executed.

= Function execution is autoscaling: execution scales
according to demand.

Philipp Haller 8



Important restrictions

- Functions are stateless.

= Must use external storage for any data/state that
needs to survive multiple function executions.

= Function execution duration limited.

= AWS Lambda: all function executions must
complete within 300 seconds.

Philipp Haller



Which use cases are well-supported?

Depending on the patterns of function invocation [1]:

= Fully independent function invocations.

——

“Embarrassingly

= Scale up or down on demand: 0
parallel

“invocations never wait for each other”

- Event-driven workflows connected via
queueing systems or object stores.

= High latency due to task handling and state management.

Philipp Haller 10



Key limitations

Communication through slow storage:
Functions not directly network-addressable,
all communication via external services

Functions are short-lived

= (Cannot service repeated requests via internal
caches.

= Cannot implement general distributed systems.

/O bottlenecks

Philipp Haller 11



invoking a ation latency
no-op Lambda function

on a 1KB argument

1KB network
message roundtrip

Latency of “communicating” 1KB:

Func. Invoc. | LambdaI/O | Lambdal/O | EC21/O EC21/0 EC2 NW
(1KB) (S3) (DynamoDB) (S3) (DynamoDB) (OMQ)
Latency 303ms 108ms 11ms 106ms 11ms 290us
Compared to best 1,045% 372X 37.9% 365X 37.9% 1X

write+read from

1] Hellerstein et al. Serverless Computing: One .y .
1] ' Y puang “long-running” function

Step Forward, Two Steps Back. CIDR 2019

12

Philipp Haller



Re-thinking distributed systems building

= Re-think fundamental building blocks.

= |Improve distributed systems stack.

= Devise and study programming models,
languages, and systems.

Informed by SE
and systems!

Philipp Haller

13



Programming model

= From data-shipping to function-shipping

= Enable entirely different classes of applications:
big data, ML model training.

= Principled fault-tolerance based on lineages.
= Guarantee properties related to fault tolerance.

= Example: program execution should never "get stuck"
if at most N-1 out of 2N replicas fail.

= Requires foundations for fault-tolerant programming.

Philipp Haller

14



Distributed programming with functional
lineages a.k.a. function passing

New data-centric programming model for functional
processing of distributed data.

= Key ideas:
= Ultilize lineages for fault injection and recovery
= Provide lineages by programming abstractions

= Keep data stationary (if possible), send functions

Philipp Haller

15



The function passing model

Consists of 3 parts:

- Silos: stationary, typed, immutable data
containers

- SiloRefs: references to local or remote Silos.

= Spores: safe, serializable functions.

Philipp Haller

16



Some visual intuition of

The function passing model

Worker Master

Silo ............................................................. ’ SiIORef

Philipp Haller

17



Silos

SiloRef[T]

def apply

def send

def persist
def unpersist

Two parts.

= SiloRef. Handle to a Silo.
= Silo. Typed, stationary data container.

User interacts with SiloRef.

SiloRefs come with 4 primitive operations.

Philipp Haller

18



Silos

_ Silo[T]
SiloRef[T]
def apply
def send e
def persist 1'
def unpersist

Primitive: apply
def apply[S](fun: T => SiloRef[S]): SiloRef[S]

= Takes a function that is to be applied to the data in the
silo associated with the SiloRef.

= (Creates new silo to contain the data that the user-
defined function returns; evaluation is deferred

Deferred

Philipp Haller



Silos

_ Silo[T]
SiloRef[T]
def apply
de.F send ...........................................................
def persist 1'
def unpersist

Primitive: send
def send(): Future[T]

= [Forces the built-up computation DAG to be sent to the
associated node and applied.

= [Future is completed with the result of the computation.

EAGER

Philipp Haller



Silos

_ Silo[T]
SiloRef[T]
def apply
de.F Send ...........................................................
def persist 1'
def unpersist

Silo factories:

object SiloRef {

def populate[T](host: Host, value: T): SiloRef[T]
def fromTextFile(host: Host, file: File): SiloRef[List[String]]

}

= (Creates silo on given host populated with given value/text file/...

Deferred

Philipp Haller 21



Basic idea: apply/send

Silo[T]
SiloRef[T]
T 4 .............................. %;;iiok_e%[s]
Silo[S]
SiloRef[S]
S 4 .................................................

Machine 1 Philipp Haller Machine 2 22



More involved example

val persons: SiloRef[List[Person]] = ... . )
persons: Silo[List[Person]]

SiloRef[List[Person]] D
.................................................................. >

Philigfaeiliee 1 Machine2 23



More involved example

val persons: SiloRef[List[Person]] = ... Silo[List[Person
val adults = persons: [ [ 1]
persons.apply(spore { ps => SiloRef[List[Person]]

val res = ps.filter(p => p.age >= 18)
SiloRef.populate(currentHost, res)

1) 7y

adults

Philigfaeiliee 1 Machine2 24



More involved example

::; 5;:;325; SiloRef[List[Person]] = ... persons: Silo[List[Person]]

persons.apply(spore { ps => SiloRef[List[Person]]

val res = ps.filter(p => p.age >= 18)
SilORe-F‘populate(cur\r\entHostJ Pes) .................................................................. >

}
val vehicles: SiloRef[List[Vehicle]] = ...

adults vehicles

val owners = adults.apply(spore {
val localVehicles = vehicles N\
ps =>
localVehicles.apply(spore {
val localps = ps owners
Vs =>
SiloRef.populate(currentHost,
localps.flatMap(p =>

vs.flatMap {
v o=>
if (v.owner.name == p.name) List((p, V))
else Nil

} hilipfaeiee 1 Machine2 25



More involved example

val persons: SiloRef[List[Person]] = ... Silol[List[Person
val adults = persons: [ [ 1]
persons.apply(spore { ps => SiloRef[List[Person]]
val res = ps.filter(p => p.age >= 18)
SiloRe-F‘ populate(cur\r\entHostJ r\es) .................................................................. >
}) A
val vehicles: SiloRef[List[Vehicle]] = ...
adults vehicles
val owners = adults.apply(...) _R
owners

Philigfaeiliee 1 Machine2 26



More involved example

val persons: SiloRef[List[Person]] = ... : ;
vap bR persons: Silo[List[Person]]
persons.apply(spore { ps => SiloRef[List[Person]]
val res = ps.filter(p => p.age >= 18)
SilORe-F‘ populate(cur\r\entHostJ Pes) .................................................................. >
1 A

val vehicles: SiloRef[List[Vehicle]] = ...

adults vehicles

val owners = adults.apply(...)
val sorted = / N\
adults.apply(spore { ps =>
SiloRef.populate(currentHost, sorted

ps.sortWith(p => p.age)) / owners
})

val labels =
sorted.apply(spore { ps =>
SiloRef.populate(currentHost, labels
ps.map(p => "Hi, " + p.name))
)

Philigfaeiliee 1 Machine2 27



More involved example

val persons: SiloRef[List[Person]] = ...
val adults =
persons.apply(spore { ps =>
val res = ps.filter(p => p.age >= 18)
SiloRef.populate(currentHost, res)
}
val vehicles: SiloRef[List[Vehicle]] = ...

val owners = adults.apply(...)

val sorted =
adults.apply(spore { ps =>
SiloRef.populate(currentHost,
ps.sortWith(p => p.age))
})
val labels =
sorted.apply(spore { ps =>
SiloRef.populate(currentHost,
ps.map(p => "Hi, " + p.name))

) .
so far we just staged
computation, we haven't yet
“kicked it off”.

}

SiloRef[List[Person]]

adults

persons:

AN

sorted

/

labels

owners

Philiphaekiles 1

vehicles

Silo[List[Person]]

Machine 2 28



More involved example
Let's make an interesting DAG!

val persons: SiloRef[List[Person]] = ...

val adults =
persons.apply(spore { ps =>

val res = ps.filter(p => p.age >= 18)
SiloRef.populate(currentHost, res)

}

val vehicles: SiloRef[List[Vehicle]] = ...

// adults that own a vehicle
val owners = adults.apply(...)

val sorted =
adults.apply(spore { ps =>
SiloRef.populate(currentHost,
ps.sortWith(p => p.age))
})

val labels =
sorted.apply(spore { ps =>
SiloRef.populate(currentHost,
ps.map(p => "Hi, " + p.name))
})

labels.persist().send()

persons:
SiloRef[List[Person]]

adults

;Fi: v
sorted
/ owners

labels
A

List[Person]=List[String]

Philiphaekiles 1

vehicles

Silo[List[Person]]

1%
Silo[List[String]]

Machine 2 29



A functional design for fault-tolerance

— A SiloRef is a lineage, a persistent (in the sense
of functional programming) data structure.

= The lineage is the DAG of operations used to
derive the data of a silo.

= Since the lineage is composed of spores [2], it is
serializable. This means it can be persisted or
transferred to other machines.

[2] Miller, Haller, and Odersky. Spores: a type-based foundation for closures
in the age of concurrency and distribution. ECOOP '14

Philipp Haller

30



A functional design for fault-tolerance

Next: we formalize lineages, a concept from the
database + systems communities, in the context of
PL. Natural fit in context of functional programming!

Formalization: typed, distributed core
language with spores, silos, and futures.

Philipp Haller 31



Abstract syntax

= terms:
X variable
| v value
|11 application
|t &t integer operator
| spore {x: T =1:;(x:T)=1} spore
| populate(?,7) populate silo
| apply(t,7) apply
| send(7) send
| await() await future
| respond(h,1,1) respond

Philipp Haller



Local reduction and lineages

R-INTOP
Vievi(@)v

/

Ev @ V]|oc—="ENM'|o

R-AppSPORE

E[(spore {x:T=v;(x:T)=1})v]| 6 =" E[[x = v]x—= )] | o

R-AwaIt
o(t)=v

Elawait(1)] |6 " ED] | o

R-ArrABs
E[((x:T)=1)v]| 6 =" E[[x—]i] | o

R-AppLY
r=Ref(l,h') "= Applied((h.i),l,p) ifresh

Elapply(r.p)] | 6 =" ERef(I' )] | &

pi=spore{x:T=v:(x:T)=1}
[ =

Mat(1)

| Applied(t,/,p)

r::=Ref(l,h) where h e #

t::=(h,i) wherehe€ # andi e N

lineages:
materialized
lineage with apply

silo reference

decentralized identifier

Philipp Haller

33




Distributed reduction

R-LocaL
i)oo'

{(t,0)"YUH |M - {(/',6")"YUH | M

R-SEND
r=Ref(l,h) m=Req(h,r,id(l)) M =Mw{h' < m}
{(E[send(r)],0)"} UH | M — {(E[id(1)],0)"} UH | M’

R-PopuLATE

t=(h,i) ifresh [=Mat(t) M =Muw{h <+ Res(t,v)}
{(E[populate(h’,v)],6)" Y UH | M — {(E[Ref(l,1)],0)"} UH | M’

R-REspoND
M' =Mw{h' + Res(1,v)}
{(E|[respond(/’,1,v)],0 }UH | M — {(E[unit],o h}UH | M’
R-ProCEsSs
t¢dom(c) M=Mw{h«m} process(h,m, 0') (t,M" o")
{(Elawait(1)],0 }UH|M—»{ E[t; await(1)],0 }UH | M wM"”

R-ProcEss-VaL
M =M"&{h <+ m} process(h,m,c)=(t,M" o)

{(vo)YUH | M - {(t,6" "y UH | M &M"

Philipp Haller

34



Type assignment

T-Var T-InT T-INTOP
x:Tel n integer literal [:Xkt:mnt D:XZE7:Int
Xkx:T Xk n: Int Lkt @t 1nt
T-ABs T-App T-Ux
Cox:T;Ek1:T DIbe:T=T DIZH:T r_-zl” o
LI (x:T)=1):T=T LEF(r): T v& T unde s Unit
Ti_s_*g’;jﬁ_ 1 WESrorel WF-STORE2 WEF-STORE3 WF-Lix1
AL m_bT"RE 0;x-v:T Iho o ¥ DX 1 € dom(X)
[T E (spore { [t=TIZF[t=v]o Yro L+Mat(1)
T-AppPSPORE
. . ’ | WE-Lin2 WE-REF
F’ZF"T:TF{;T(‘ S1)=T X(id(l))=T I .TEFp:T' =sitoref[T]{..} THI  TFI he#
EF (1 T F Applied(1,/, p) T F Ref(l,h)
T-AppLy
IS b1 siloref[T] ;b1 :|WF-Res WEF-REeQ WEF-HosTCONFIG
LT F aply (7 X1)=T O;Zkv:T r=Ref(l,h') Z(id(l))=Z(1) Zhkr Yo dILEFR::T
Tk Res(1,v) L FReq(h,r,1) Tk (1,0)"
T-Awart T-Ip
X1 Future[T) WE-HosT2 WF-MESSAGES
DX F waic(r) : T Ty ;Vf'@“"“‘ Sk (r,0)" TFH ;"fg‘“E“AGEs'E“P Skm he# TFM
h YH{h+m}yM
TPod LH{(t,0)"}UH {h < m}
ol WE-ConriG
X-H LM
SHH | M

Philipp Haller

35



Properties of function passing model

= Subject reduction theorem guarantees

preservation of types under reduction, as well as
preservation of lineage mobility.

— Progress theorem guarantees the finite
materialization of remote, lineage-based data.

First correctness results for a programming model
for lineage-based distributed computation.

Philipp Haller

36



Paper

Haller, Miller, and Mduller. A Programming Model and Foundation for Lineage-Based
Distributed Computation. Journal of Functional Programming 28 (2018)
https://infoscience.epfl.ch/record/230304

Philipp Hall



https://infoscience.epfl.ch/record/230304

Ongoing and future work

Distributed Shared State Security & Privacy Chaos Engineering

— Consistency, availability, = Privacy-aware = Testing hypotheses

partition tolerance distribution about resilience in

— Determinism — Information- production systems

flow security

Philipp Haller




Conclusion

Serverless computing

— Promising direction, intriguing properties

— Important limitations
Foundations for function-shipping

— Lineage-based distributed computation

— First correctness results for a programming model based on lineages
Goal: principles and foundations for a new distributed systems stack

Philipp Haller

39



