
Philipp Haller

Serverless Cloud Computing Beyond FaaS:
Programming Models and Abstractions

Philipp Haller

KTH Royal Institute of Technology
Stockholm, Sweden

2nd Vienna Software Seminar (VSS)
Vienna, Austria, Aug 29, 2019

 1

Philipp Haller

Background
Scala

 2

2005-2014 Scala language team

2012-2014 Typesafe, Inc.
Co-author Scala language specification

2019: ACM SIGPLAN Programming Languages Software Award for Scala
Core contributors:  
Martin Odersky, Adriaan Moors, Aleksandar Prokopec, Heather Miller,
Iulian Dragos, Nada Amin, Philipp Haller, Sebastien Doeraene, Tiark Rompf

 3

Scala Actors and Akka

https://www.lightbend.com/akka-five-year-anniversary

Scala Actors used, e.g.,
in core message queue
system of Twitter:

https://www.lightbend.com/akka-five-year-anniversary

Philipp Haller

The use of actors is common in industry
Side remark

 4

Slide from:
Meiklejohn et al.

“Partisan” at
USENIX ATC ‘19

Philipp Haller

Ongoing work
Current directions

Type systems

 5

LaCasa: lightweight affine types and object capabilities in Scala  
[Haller & Loiko 2016]

Static reasoning about capabilities and resources
Types for safe distribution

Closures [Miller et al. 2014], eventual consistency
[Zhao & Haller 2019]

Reusability!

Concurrent and distributed programming
Deterministic concurrency [Haller et al. 2016], function passing
[Haller et al. 2018], asynchronous streams [Haller & Miller 2019]

Philipp Haller

Cloud computing
Context

Public cloud infrastructure integral part of
numerous large-scale, commercial applications.

Support for enterprise services: databases,
queueing systems, object storage, etc.

 6

So, cloud computing is now essentially
a legacy enterprise service, right?

Amazon Web Services introduced > 12 years ago.

Philipp Haller

Unused potential?
Cloud computing

“the biggest assemblage of data capacity and
distributed computing power ever available to
the general public, managed as a service.” [1]

 7

NO!!!

The cloud is…

[1] Hellerstein et al. Serverless Computing: One Step Forward,
Two Steps Back. CIDR 2019

So, cloud computing is now essentially
a legacy enterprise service, right?

Philipp Haller

Function execution is autoscaling: execution scales
according to demand.

Users only pay for compute resources used when their
code is executed.

What is Serverless Computing?
Functions-as-a-Service (FaaS)

Developers upload their code (functions) to the cloud.

No need for operating or provisioning servers.

 8

Example event:
“a commit was
pushed to branch X

of repository Y.”

Pay per use!

Cloud platform executes these functions in response
to events.

“Serverless”

Philipp Haller

Important restrictions
“Where is the catch?”

Functions are stateless.

Function execution duration limited.

 9

Must use external storage for any data/state that
needs to survive multiple function executions.

AWS Lambda: all function executions must
complete within 300 seconds.

Philipp Haller

Which use cases are well-supported?
What is it good for?

Fully independent function invocations.

Event-driven workflows connected via
queueing systems or object stores.

 10

Scale up or down on demand:  
“invocations never wait for each other”

Depending on the patterns of function invocation [1]:

“Embarrassingly
parallel”

High latency due to task handling and state management.

Philipp Haller

Key limitations
Communication through slow storage: 
Functions not directly network-addressable,  
all communication via external services

 11

I/O bottlenecks

Functions are short-lived

Cannot implement general distributed systems.

Cannot service repeated requests via internal
caches.

Philipp Haller

Communication latency

Latency of “communicating” 1KB:

 12

write+read from
“long-running” function

invoking a
no-op Lambda function

on a 1KB argument
1KB network

message roundtrip

[1] Hellerstein et al. Serverless Computing: One
Step Forward, Two Steps Back. CIDR 2019

Philipp Haller

Re-thinking distributed systems building
Back to the roots

Re-think fundamental building blocks.

Devise and study programming models,
languages, and systems.

 13

Improve distributed systems stack.

Informed by SE
and systems!

Philipp Haller

Programming model
Challenge

From data-shipping to function-shipping

Principled fault-tolerance based on lineages.

 14

Enable entirely different classes of applications:  
big data, ML model training.

Guarantee properties related to fault tolerance.

Example: program execution should never "get stuck"
if at most N-1 out of 2N replicas fail.

Requires foundations for fault-tolerant programming.

Philipp Haller

Distributed programming with functional
lineages a.k.a. function passing

New data-centric programming model for functional
processing of distributed data.
Key ideas:

 15

Provide lineages by programming abstractions
Keep data stationary (if possible), send functions

Utilize lineages for fault injection and recovery

Philipp Haller

The function passing model
Introducing

Consists of 3 parts:

Silos: stationary, typed, immutable data
containers

SiloRefs: references to local or remote Silos.

Spores: safe, serializable functions.

 16

Philipp Haller

The function passing model
Some visual intuition of

Silo SiloRef

MasterWorker

 17

Philipp Haller

Silos
What are they?

Silo[T]

T

SiloRef[T]

Two parts.

def apply
def send
def persist
def unpersist

SiloRef. Handle to a Silo.
Silo. Typed, stationary data container.

User interacts with SiloRef.

SiloRefs come with 4 primitive operations.
 18

Philipp Haller

Silos
What are they?

Silo[T]

T

SiloRef[T]

Primitive: apply

Takes a function that is to be applied to the data in the
silo associated with the SiloRef.

Creates new silo to contain the data that the user-
defined function returns; evaluation is deferred

def apply[S](fun: T => SiloRef[S]): SiloRef[S]

Enables interesting computation DAGsDeferred

def apply
def send
def persist
def unpersist

 19

Philipp Haller

Silos
What are they?

Silo[T]

T

SiloRef[T]

Primitive: send

Forces the built-up computation DAG to be sent to the
associated node and applied.

Future is completed with the result of the computation.

def send(): Future[T]

EAGER

def apply
def send
def persist
def unpersist

 20

Philipp Haller

Silos

Silo[T]

T

SiloRef[T]

Silo factories:

Creates silo on given host populated with given value/text file/…

object SiloRef {
 def populate[T](host: Host, value: T): SiloRef[T]
 def fromTextFile(host: Host, file: File): SiloRef[List[String]]
 ...
}

def apply
def send
def persist
def unpersist

Deferred

What are they?

 21

Philipp Haller

)

Basic idea: apply/send

Silo[T]

Machine 1 Machine 2

SiloRef[T]
λ

T

SiloRef[S]

S

Silo[S]

)T⇒SiloRef[S]

 22

Philipp Haller

More involved example

Silo[List[Person]]

Machine 1

SiloRef[List[Person]]

Let’s make an interesting DAG!

Machine 2

persons:
val persons: SiloRef[List[Person]] = ...

 23

Philipp Haller

More involved example

Silo[List[Person]]

Machine 1

SiloRef[List[Person]]

Let’s make an interesting DAG!

Machine 2

persons:
val persons: SiloRef[List[Person]] = ...
val adults =
 persons.apply(spore { ps =>
 val res = ps.filter(p => p.age >= 18)
 SiloRef.populate(currentHost, res)
 })

adults

 24

Philipp Haller

More involved example

Silo[List[Person]]

Machine 1

SiloRef[List[Person]]

Let’s make an interesting DAG!

Machine 2

persons:
val persons: SiloRef[List[Person]] = ...

val vehicles: SiloRef[List[Vehicle]] = ...

// adults that own a vehicle
val owners = adults.apply(spore {

 val localVehicles = vehicles // spore header
 ps =>
 localVehicles.apply(spore {

 val localps = ps // spore header
 vs =>

 SiloRef.populate(currentHost,
 localps.flatMap(p =>

 // list of (p, v) for a single person p
 vs.flatMap {

 v =>
 if (v.owner.name == p.name) List((p, v))
 else Nil

 }
)

)

adults

owners

vehicles

val adults =
 persons.apply(spore { ps =>
 val res = ps.filter(p => p.age >= 18)
 SiloRef.populate(currentHost, res)
 })

 25

Philipp Haller

More involved example

Silo[List[Person]]

Machine 1

SiloRef[List[Person]]

Let’s make an interesting DAG!

Machine 2

persons:
val persons: SiloRef[List[Person]] = ...

val vehicles: SiloRef[List[Vehicle]] = ...

// adults that own a vehicle
val owners = adults.apply(...)

adults

owners

vehicles

val adults =
 persons.apply(spore { ps =>
 val res = ps.filter(p => p.age >= 18)
 SiloRef.populate(currentHost, res)
 })

 26

Philipp Haller

More involved example

Silo[List[Person]]

Machine 1

SiloRef[List[Person]]

Let’s make an interesting DAG!

Machine 2

persons:
val persons: SiloRef[List[Person]] = ...

val vehicles: SiloRef[List[Vehicle]] = ...

// adults that own a vehicle
val owners = adults.apply(...)

adults

owners

vehicles

val sorted =
 adults.apply(spore { ps =>
 SiloRef.populate(currentHost,
 ps.sortWith(p => p.age))
 })
val labels =
 sorted.apply(spore { ps =>
 SiloRef.populate(currentHost,
 ps.map(p => "Hi, " + p.name))
 })

sorted

labels

val adults =
 persons.apply(spore { ps =>
 val res = ps.filter(p => p.age >= 18)
 SiloRef.populate(currentHost, res)
 })

 27

Philipp Haller

More involved example

Silo[List[Person]]

Machine 1

SiloRef[List[Person]]

Let’s make an interesting DAG!

Machine 2

persons:
val persons: SiloRef[List[Person]] = ...

val vehicles: SiloRef[List[Vehicle]] = ...

// adults that own a vehicle
val owners = adults.apply(...)

adults

owners

vehicles

sorted

labels

so far we just staged
computation, we haven’t yet
“kicked it off”.

val adults =
 persons.apply(spore { ps =>
 val res = ps.filter(p => p.age >= 18)
 SiloRef.populate(currentHost, res)
 })

val sorted =
 adults.apply(spore { ps =>
 SiloRef.populate(currentHost,
 ps.sortWith(p => p.age))
 })
val labels =
 sorted.apply(spore { ps =>
 SiloRef.populate(currentHost,
 ps.map(p => "Hi, " + p.name))
 })

 28

Philipp Haller

More involved example

Silo[List[Person]]

Machine 1

SiloRef[List[Person]]

Let’s make an interesting DAG!

Machine 2

persons:
val persons: SiloRef[List[Person]] = ...

val vehicles: SiloRef[List[Vehicle]] = ...

// adults that own a vehicle
val owners = adults.apply(...)

adults

owners

vehicles

sorted

labels λ

List[Person]⇒List[String]

Silo[List[String]]

val adults =
 persons.apply(spore { ps =>
 val res = ps.filter(p => p.age >= 18)
 SiloRef.populate(currentHost, res)
 })

val sorted =
 adults.apply(spore { ps =>
 SiloRef.populate(currentHost,
 ps.sortWith(p => p.age))
 })
val labels =
 sorted.apply(spore { ps =>
 SiloRef.populate(currentHost,
 ps.map(p => "Hi, " + p.name))
 })
labels.persist().send()

 29

Philipp Haller

A functional design for fault-tolerance

A SiloRef is a lineage, a persistent (in the sense
of functional programming) data structure.

The lineage is the DAG of operations used to
derive the data of a silo.

Since the lineage is composed of spores [2], it is
serializable. This means it can be persisted or
transferred to other machines.

Putting lineages to work

 30

[2] Miller, Haller, and Odersky. Spores: a type-based foundation for closures
in the age of concurrency and distribution. ECOOP '14

Philipp Haller

Next: we formalize lineages, a concept from the
database + systems communities, in the context of
PL. Natural fit in context of functional programming!

A functional design for fault-tolerance
Putting lineages to work

Formalization: typed, distributed core
language with spores, silos, and futures.

 31

Philipp Haller 32

Abstract syntax

Philipp Haller 33

Local reduction and lineages

Philipp Haller 34

Distributed reduction

Philipp Haller 35

Type assignment

Philipp Haller

Properties of function passing model
Formalization

Subject reduction theorem guarantees
preservation of types under reduction, as well as
preservation of lineage mobility.

Progress theorem guarantees the finite
materialization of remote, lineage-based data.

 36

First correctness results for a programming model
for lineage-based distributed computation.

Philipp Haller

Paper
Details, proofs, etc.

 37

Haller, Miller, and Müller. A Programming Model and Foundation for Lineage-Based
Distributed Computation. Journal of Functional Programming 28 (2018) 
https://infoscience.epfl.ch/record/230304

https://infoscience.epfl.ch/record/230304

Philipp Haller 38

Consistency, availability,
partition tolerance
Determinism

Distributed Shared State Security & Privacy

Privacy-aware
distribution
Information-
flow security

Chaos Engineering

Testing hypotheses
about resilience in
production systems

Ongoing and future work
Onward

Philipp Haller

Conclusion

• Serverless computing
– Promising direction, intriguing properties
– Important limitations

• Foundations for function-shipping
– Lineage-based distributed computation
– First correctness results for a programming model based on lineages

• Goal: principles and foundations for a new distributed systems stack

 39

