
I stand the
son

on
me

This is

home
pri

cliffs
with my next to

Our
Our

land
son

I stand the
son

on
me

This is

home
pri

cliffs
with my next to

Our
Our

land
sonIcarus

“Don’t fly too close to the sun”

Overconfidence
Recklessness

Daedalus

I stand the
son

on
me

This is

home
pri

cliffs
with my next to

Our
Our

land
sonIcarus

Master
craftsman

Inventions often haveunintendedconsequences

“Don’t fly too close to the sun”

Overconfidence
Recklessness

RESoftware
sELB

@SoftwareREBELs rebels.ece.mcgill.ca

 Shane
 McIntosh
 Asst. Prof.
 Lead Rebel

Overconfidence Recklessness

The of
analyzing continuous software data

unintended consequences

Asst. Prof.
’15–now

PhD
’12–‘15

SW Eng.
’10–‘12

MSc
’09–‘10

Rockstar
’03–‘08

I’m an academic now, but
I wasn’t always so respectable

@SoftwareREBELs rebels.ece.mcgill.ca�5�5

RESoftware
sELBRESoftware
sELB

Repository
Excavation

�6@SoftwareREBELs rebels.ece.mcgill.ca

RESoftware
sELBRESoftware
sELB

re
po
rt

deplo
y

buildcomm
it

Build
Engineering

RESoftware
sELB

�7

Repository
Excavation

@SoftwareREBELs rebels.ece.mcgill.ca

What would
your software
repositories

say if they
could talk?

How can we
support and
leverage the
pipeline to

improve dev
and delivery?

 1. Integrate
Patch

+
+
-

 2. Build

 3. Deploy

 8

Release pipelines

 4. Monitor

New!New!

�8@SoftwareREBELs rebels.ece.mcgill.ca

I’ve a
wax

got
string

Some fea birdsstole

plan
And some and some

theIthers from

@SoftwareREBELs rebels.ece.mcgill.ca�9

Artist: Markus Stadlober

@SoftwareREBELs rebels.ece.mcgill.ca�10

LeveragingSupporting

package rebels;

import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;

public class App {
 public static void main (String[] args) {
 final Logger logger = LogManager.getLogger("HelloWorld");
 logger.info("Hello World!");
 }
}
<project …>
 <groupId>rebels</groupId>
 <artifactId>helloworld</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>
</project>

�11@SoftwareREBELs rebels.ece.mcgill.ca

$ mvn compile

[INFO] ---
[INFO] BUILD FAILURE
[INFO] ---

�12@SoftwareREBELs rebels.ece.mcgill.ca

$ mvn compile

[INFO] ---
[INFO] BUILD FAILURE
[INFO] ---

[ERROR] Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.1:compile
(default-compile) on project helloworld: Compilation failure: Compilation failure:

�13@SoftwareREBELs rebels.ece.mcgill.ca

English m%@#$!
Do you speak it?

�14@SoftwareREBELs rebels.ece.mcgill.ca

$ mvn compile

[INFO] ---
[INFO] BUILD FAILURE
[INFO] ---

[ERROR] Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.1:compile
(default-compile) on project helloworld: Compilation failure: Compilation failure:

[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[3,32] package
org.apache.logging.log4j does not exist

[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[4,32] package
org.apache.logging.log4j does not exist

[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[9,11] cannot find
symbol
[ERROR] symbol: class Logger
[ERROR] location: class rebels.App
[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[9,27] cannot find
symbol

[ERROR] symbol: variable LogManager
[ERROR] location: class rebels.App
[ERROR] -> [Help 1]

�15@SoftwareREBELs rebels.ece.mcgill.ca

$ mvn compile

[INFO] ---
[INFO] BUILD FAILURE
[INFO] ---

[ERROR] Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.1:compile
(default-compile) on project helloworld: Compilation failure: Compilation failure:

[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[3,32] package
org.apache.logging.log4j does not exist

[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[4,32] package
org.apache.logging.log4j does not exist

[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[9,11] cannot find
symbol
[ERROR] symbol: class Logger
[ERROR] location: class rebels.App
[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[9,27] cannot find
symbol

[ERROR] symbol: variable LogManager
[ERROR] location: class rebels.App
[ERROR] -> [Help 1]

�16@SoftwareREBELs rebels.ece.mcgill.ca

package rebels;

import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;

public class App {
 public static void main (String[] args) {
 final Logger logger = LogManager.getLogger("HelloWorld");
 logger.info("Hello World!");
 }
}

<project …>
 <groupId>rebels</groupId>
 <artifactId>helloworld</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>
</project>

�17@SoftwareREBELs rebels.ece.mcgill.ca

package rebels;

import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;

public class App {
 public static void main (String[] args) {
 final Logger logger = LogManager.getLogger("HelloWorld");
 logger.info("Hello World!");
 }
}

<project …>
 <groupId>rebels</groupId>
 <artifactId>helloworld</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>
 <dependencies>

<dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-api</artifactId>
 <version>2.10.0</version>
 </dependency>
 </dependencies>
</project>

�18@SoftwareREBELs rebels.ece.mcgill.ca

$ mvn compile

[INFO] ---
[INFO] BUILD SUCCESS
[INFO] ---

Why can’t
Maven fix this
automatically?

�19@SoftwareREBELs rebels.ece.mcgill.ca

Artist: Charles Paul Landon

And
leap

we
We

wind
A song wordsper

from the cliff
hear the

fortoothat’s fect
sing

rebels.ece.mcgill.ca@SoftwareREBELs �20

Build
Medic

Apply Repair Strategy

Evaluate Revision

Detect Build Failure Type
[INFO] -------------
[INFO] BUILD FAILURE
[INFO] -------------
…

[INFO] -------------
[INFO] BUILD SUCCESS
[INFO] -------------
…

�21

Automatically Repairing
Dependency-Related Build

Breakage
C. Macho, S. McIntosh, M. Pinzger

[SANER 2018]

Chris
Macho

Postdoc.

#buildeng
#breakage #buildmedic

@SoftwareREBELs rebels.ece.mcgill.ca

Studying how developers repair
build breakage

[INFO] -------------
[INFO] BUILD FAILURE
[INFO] -------------
…

[INFO] -------------
[INFO] BUILD SUCCESS
[INFO] -------------
…

@SoftwareREBELs rebels.ece.mcgill.ca�22

Studying how developers repair
build breakage Extracting Build Changes

with BuildDiff
C. Macho, S. McIntosh, M. Pinzger

[SANER 2018]

BuildDiff

Dependency
Deleted

Property
Change

Version
Update

@SoftwareREBELs rebels.ece.mcgill.ca�23

Repeat and investigate 37 breakage-fix
pairs, 27 of which are fixed by one change

Ve
rsi

on
 C

ha
ng

e

Dep
. D

ele
te

Re
po

sito
ry

 C
ha

ng
e

Dep
. ID

 C
ha

ng
e

23
5

17

�24@SoftwareREBELs rebels.ece.mcgill.ca

We formulated repair strategies for the
three most frequent breakage repairs

Version
Change

 <dependency>
 <groupId>org.robovm</groupId>
 <artifactId>robovm-cocoatouch</artifactId>
+ <version>1.0.0</version>
- <version>1.0.0-SNAPSHOT</version>
 </dependency>

- <dependency>
- <groupId>org.robovm</groupId>
- <artifactId>robovm-cocoatouch</artifactId>
- <version>1.0.0-SNAPSHOT</version>
- </dependency>

Dependency
Delete

Add
Repository

+ <repository>
+ <id>spring</id>
+ <name>springRepo</name>
+ <url>http://repo.spring.io/libs-milestone/</url>
+ </repository>

@SoftwareREBELs rebels.ece.mcgill.ca�25

BuildMedic achieves promising
results on 84 unseen breakage pairs

@SoftwareREBELs rebels.ece.mcgill.ca�26

54%
of repair attempts are
eventually successful

76%
of successful repairs are
identified in one iteration

The 45 BuildMedic repairs are usually
identical or very similar to developer repairs

@SoftwareREBELs rebels.ece.mcgill.ca�27

36%
of successful repairs are

identical to the corresponding
developer repairs

44%
of successful repairs edit the

same elements as the
corresponding developer

repairs

Another

Steer of
you’ll

clear
self

In the

the sun
Or find your

sea

Artist: Amy Adkins

@SoftwareREBELs rebels.ece.mcgill.ca�28

Key Assumption:
Historical build breakages are

meaningful!

�29@SoftwareREBELs rebels.ece.mcgill.ca

Experimenting with new
platforms… Is it breakage?

This project has had
allow_failures
enabled for its
entire lifetime!

�30

Keheliya
Gallaba

Ph.D.
Student

#buildeng
#robust #efficient #CI #CD

Chris
Macho

Postdoc.

#buildeng
#breakage #buildmedic

Noise and Heterogeneity in Historical Build Data:
An Empirical Study of Travis CI

K. Gallaba, C. Macho, M. Pinzger, S. McIntosh
[ASE 2018]

Can we rely
on build data?

@SoftwareREBELs rebels.ece.mcgill.ca

�31

Noisy? Heterogeneous?

To what extent is build data…

@SoftwareREBELs rebels.ece.mcgill.ca

We study open source projects
that use the Travis CI service

680,209
Travis CI builds

1,276
projects

�32@SoftwareREBELs rebels.ece.mcgill.ca

�33

Noisy?

To what extent is build data…

@SoftwareREBELs rebels.ece.mcgill.ca

We look for passing builds with actively
ignored failures

680,209
Builds

496,204
Builds

Select
passing
builds

59,904
Builds

Select builds
with failing jobs

Is allow_failures
property enabled for

the failing jobs?

�34@SoftwareREBELs rebels.ece.mcgill.ca

12%
of passing builds have at least
one actively ignored failure

In those passing builds that have actively
ignored failures…

�35�35@SoftwareREBELs rebels.ece.mcgill.ca

87%
of jobs are

actively ignored

Up to

25%
of jobs failed

A median of

Passively ignored breakages may introduce noise
when all breakages are assumed to be distracting

�36

680,209
Builds

Graph
analysis

Graph construction
using version
control data

610,550
Builds

Filter out, e.g.,
scheduled builds

�36@SoftwareREBELs rebels.ece.mcgill.ca

In some cases, builds remain broken for 423 days

�37�37@SoftwareREBELs rebels.ece.mcgill.ca

Reasons for ignoring a build breakage:
Staleness

Developers become
desensitized to stale
(a.k.a., repeated)

breakages

�38@SoftwareREBELs rebels.ece.mcgill.ca

Maven Log Analyzer

Maven
Build Log

Build fails due to the
same reason as a

prior failure?

Failure details are
equal to a prior

failure?

YES
Stale

Breakage

YES

NO

Not Stale
Breakage

NO

Measuring staleness
in Maven build breakages

�39@SoftwareREBELs rebels.ece.mcgill.ca

Two of every three build breakages are stale

�40@SoftwareREBELs rebels.ece.mcgill.ca

Noise may influence analyses
based on build outcome data

Passing build outcomes do not
always indicate that the build

was entirely clean

Build breakages persist for
up to 485 commits (423 days)

67% of build breakages we
analyze are stale

@SoftwareREBELs rebels.ece.mcgill.ca�41

Noise may influence analyses
based on build outcome data

Build outcomes are
heterogenous

Environment-specific breakage
is common

Breakage due to build tool
execution is rare

Future automatic breakage
recovery techniques should

tackle issues in CI scripts

Passing build outcomes do not
always indicate that the build

was entirely clean

Build breakages persist for
up to 485 commits (423 days)

67% of build breakages we
analyze are stale

@SoftwareREBELs rebels.ece.mcgill.ca�42

Artist: Jacob Peter Gowy

wingsyou
They’re

Won’t
done

Splitting seams

look at your
com un

theat
ing

�43@SoftwareREBELs rebels.ece.mcgill.ca

@SoftwareREBELs rebels.ece.mcgill.ca�44

LeveragingSupporting

Watch out for noise
and heterogeneity in
build outcome data!

3. Notify relevant
reviewers

4. Reviewers assess
the patch

5. Integrate into
VCS

1. Upload patch

2. Execute sanity
checks

Code review: A Best Practice for SQA

�45

Legend
Pass Fail

@SoftwareREBELs rebels.ece.mcgill.ca

Existence of a code review ≠ code quality

�46

Ship it!

sslConnection.c ReviewBoard

sslConnection.c
 sslClientServerHandshake(…)
……
+ if (err != 0)
+ goto fail;
+ goto fail; /* MISTAKE! */
……

@SoftwareREBELs rebels.ece.mcgill.ca

Why does “rubber stamping” happen?

�47

Team Lead
Argh!10 review requests pending

for me this morning!

I should focus my effort on the risky
patches

@SoftwareREBELs rebels.ece.mcgill.ca

SINCE LINES OF CODE (LOC) == RISK …

REVIEW REQUEST #1

REVIEW REQUEST #10

REVIEW REQUEST #2

…

Largest Patch

Smallest Patch

Priority Queue

wc -l

The potential
impact of a

change matters
more!

BLIMP Tracer: Integrating Build
Impact Analysis with Code Review

R. Wen, D. Gilbert, M. G. Roche, S. McIntosh
[ICSME 2018]

Example: how BLIMP Tracer can help
Novice Developer

REVIEW REQUEST #1

REVIEW REQUEST #10

REVIEW REQUEST #9

…

Priority Queue
Most impactful

Least impactful

BLIMP
TRACER

�48

sslConnection.c
 sslClientServerHandshake(…)
……
+ if (err != 0)
+ goto fail;
+ goto fail; /* MISTAKE! */
……

REVIEW REQUEST #10

@SoftwareREBELs rebels.ece.mcgill.ca

Context of the studied team

Backup & Recovery

Administrator software

Server software

Client software

Modules for database

Storage node software

�49@SoftwareREBELs rebels.ece.mcgill.ca

BLIMP Tracer
Step 1: Identify changed files

eg1.c

example.h

eg2.c eg3.c

All files in a sample system:

�50@SoftwareREBELs rebels.ece.mcgill.ca

BLIMP Tracer

eg1.o

all

deliverable_a

eg1.c eg2.c

eg2.o

example.h

eg3.o

deliverable_b

eg3.ceg1.c

example.h

eg2.c eg3.c

MAKAO

�51

Step 2: Construct Build Dependency Graph (BDG)

@SoftwareREBELs rebels.ece.mcgill.ca

BLIMP Tracer

eg1.o

all

deliverable_a

eg1.c eg2.c

eg2.o

example.h

eg3.o

deliverable_b

eg3.ceg1.c

example.h

eg2.c eg3.c

MAKAO

eg1.o eg2.o eg3.o

deliverable_a deliverable_b

all

�52

Step 3: BDG Traversal and Filtering

@SoftwareREBELs rebels.ece.mcgill.ca

BLIMP Tracer
Summary: Bug #12345 Fix compatibility problems

View Diff Ship It!

Review Request: 735, Created Jun 1, 2018

Submitter: Adam
Bugs: 12345

Reviewers
Groups: project_linux
People: Becky

12345: Fix compatibility problems
These are the changes for fixing the problems in bug 12345
Summary of changes:

Description:

…
Testing Done:
Manual testing and unit testing are done by the QA team.

Review request created Jun 1, 2018 10:42AM

BLIMP Tracer Jun 1, 2018 10:49AM
BLIMP Tracer: Impact Analysis Summary

Detailed report can be found at: https://secure.comp.com/blimp/735
 >> linux/app.c impacts on 10 deliverables
 >> linux/foo.c impacts on 2 deliverables
…

Impact analysis report for RR 735

BLIMP Tracer

Generated at Jun 1, 2018, 10:49:01 EDT

[1] linux/app.c impacts on 10 deliverables within 2 components

Original Review Request URL: https://reviews.secure.comp.com/735

[2] linux/foo.c impacts on 2 deliverables within 1 component

[Component] ProjectX.Foo

[Deliverable] linux/bar1

[Deliverable] linux/bar2

 https://secure.comp.com/blimp/735

�53

Step 4: Present results within the reviewing interface

@SoftwareREBELs rebels.ece.mcgill.ca

I rus
still
ca

sky
Maybe

climbs
Higher in the

I’ve

Artist: Amy Adkins

spoken too soon?

@SoftwareREBELs rebels.ece.mcgill.ca�54

Key Assumption:
Each review evolves independently

Reviewer 1

Reviewer 2

Reviewer 1,

Reviewer 2

In reality, reviews can contain links

@SoftwareREBELs rebels.ece.mcgill.ca�55

Toshiki
Hirao

Ph.D.
Student

#MSR
#codereview #linkage

The Review Linkage Graph for Code Review Analytics:
A Recovery Approach and Empirical Study

T. Hirao, S. McIntosh, A. Ihara, K. Matsumoto
[ESEC/FSE 2019]

To what extent do
review links impact

code review analytics?

Links between reviews are not rare

�56

0%

5%

10%

15%

20%

25%

30%

OpenStack Chromium AOSP Qt Eclipse LIbreoffice

Manually labelling reviews

�57

Linked reviews
from OpenStack

Looks like a
duplicated solution

I agree!
Duplicated

Solution

@SoftwareREBELs rebels.ece.mcgill.ca

Category:
Alternative

Solution

Category:
Patch

Dependency

Group review linkage patterns into categories

Duplicated
Solution

Shallow
Fix

Root
Cause

�58@SoftwareREBELs rebels.ece.mcgill.ca

The five discovered categories
and their link to review analytics

�59@SoftwareREBELs rebels.ece.mcgill.ca

Nova Neutron Example

Patch Dependency 55% 56% It's used in the dependent patch:
<review 100383>

Broader Context 20% 19% Please look at <review 103174>.

Alternative Solution 14% 15% It looks same as <review 99522>.

Version Control Issues 6% 6% Unfortunately this patch is conflict to
<review 94208>

Feedback Related 5% 4% I split this … after comment… on my
proposed fix <review 93903 >

Reviewer recommendation

Review outcome prediction

The five discovered categories
and their link to review analytics

�60@SoftwareREBELs rebels.ece.mcgill.ca

Nova Neutron Example

Patch Dependency 55% 56% It's used in the dependent patch:
<review 100383>

Broader Context 20% 19% Have a look at <review 103174>.

Alternative Solution 14% 15% It looks same as <review 99522>.

Version Control Issues 6% 6% Unfortunately this patch is conflict to
<review 94208>

Feedback Related 5% 4% I split this … after comment… on my
proposed fix <review 93903 >

Review outcome prediction

The five discovered categories
and their link to review analytics

�61@SoftwareREBELs rebels.ece.mcgill.ca

Nova Neutron Example

Patch Dependency 55% 56% It's used in the dependent patch:
<review 100383>

Broader Context 20% 19% Have a look at <review 103174>.

Alternative Solution 14% 15% It looks same as <review 99522>.

Version Control Issues 6% 6% Unfortunately this patch is conflict to
<review 94208>

Feedback Related 5% 4% I split this … after comment… on my
proposed fix <review 93903 >

Reviewer recommendation

Review outcome prediction

The five discovered categories
and their link to review analytics

�62@SoftwareREBELs rebels.ece.mcgill.ca

Nova Neutron Example

Patch Dependency 55% 56% It's used in the dependent patch:
<review 100383>

Broader Context 20% 19% Have a look at <review 103174>.

Alternative Solution 14% 15% It looks same as <review 99522>.

Version Control Issues 6% 6% Unfortunately this patch is conflict to
<review 94208>

Feedback Related 5% 4% I split this … after comment… on my
proposed fix <review 93903 >

The five discovered categories
and their link to review analytics

�63@SoftwareREBELs rebels.ece.mcgill.ca

Nova Neutron Example

Patch Dependency 55% 56% It's used in the dependent patch:
<review 100383>

Broader Context 20% 19% Have a look at <review 103174>.

Alternative Solution 14% 15% It looks same as <review 99522>.

Version Control Issues 6% 6% Unfortunately this patch is conflict to
<review 94208>

Feedback-Related 5% 4% I split this … after comment… on my
proposed fix <review 93903>

Reviewer recommendation

A closer look at the potential impact
on review outcome prediction

�64@SoftwareREBELs rebels.ece.mcgill.ca

Linking Linked

Merged Merged

Patch Dependency

The outcome depends
on the other review

Linking Linked

Abandoned Merged

Alternative Solution

One is likely no
longer necessary

Patch dependency links tend to have the
same outcome; alternative solutions do not

�65@SoftwareREBELs rebels.ece.mcgill.ca

Nova Neutron

Patch
Dependency

IOR
(Merged) 87% 71%

IOR
(Abandoned) 86% 86%

Alternative Solution

IOR
(Merged) 18% 26%

IOR
(Abandoned) 46% 62%

Identical Outcome Rate (IOR)

A closer look at the potential impact
on reviewer recommendation

�66@SoftwareREBELs rebels.ece.mcgill.ca

Overlapping Reviewer Rate
(ORR) Nova Neutron
Patch

Dependency 50% 51%

Alternative Solution 65% 77%

RESoftware
sELB

�67

ha
gods!

All

O

a new life
Why is this

I was
myFor

want
ppening tome?

ed
to grow up free

Artist: Jacob Peter Gowy

@SoftwareREBELs rebels.ece.mcgill.ca�67

�68

LeveragingSupporting

Watch out for
interconnected

artifacts of interest!
Watch out for noise
and heterogeneity in
build outcome data!

@SoftwareREBELs rebels.ece.mcgill.ca

�69

I

willI nev a

O gods!

will hang up my

er gain!

@SoftwareREBELs rebels.ece.mcgill.ca

Artist: Paul Lee

�70
・・・

1st

2nd

3rd

cHRev

1st

2nd

3rd

Linkage + cHRev Overlapping
reviewers

If overlapping reviewers are added at
the top of the reviewer candidate list…

@SoftwareREBELs rebels.ece.mcgill.ca

…Substantially better results are
achieved!

�71@SoftwareREBELs rebels.ece.mcgill.ca

Nova Neutron

Prec. Rec. F1. Prec. Rec. F1.

cHRev 0.30 0.32 0.30 0.28 0.31 0.29

cHRev+
Linkage 0.40 0.43 0.41 0.42 0.45 0.43

Signal-to-Noise Ratio (SNR) for CI data

�72@SoftwareREBELs rebels.ece.mcgill.ca

ASE ’18, September 3–7, 2018, Montpellier, France Keheliya Gallaba, Christian Macho, Martin Pinzger, and Shane McIntosh

0%

25%

50%

75%

100%

Project

S
ta

le
 B

re
a

ka
g

e
s

P
e

rc
e

n
ta

g
e

Figure 5: Percentage of stale breakages in each project can
range from 7% to 96%.

Approach. In this section, we investigate how many times devel-
opers come across the same breakage repeatedly in the history of
a project with respect to the length of build breakage sequences.
These stale breakages can occur either consecutively or intermit-
tently. Hence, we extend the Maven Log Analyzer developed by
Macho et al. [15]. We use it to compare two Travis CI build jobs
and check the similarity of the breakages. To make the comparison
efficient, this is done in two steps. First, the logs of build jobs are
parsed and checked if they are breaking due to the same reason
(e.g., compilation failure, test execution failure, dependency reso-
lution failure). If the reason for failures are equal then the details
of the failure are also checked (e.g., if both breakages are due to
compilation failure, check if the compilation error is the same).

Results. Figure 5 shows the percentage of stale build breakages in
each project in descending order.

Observation 4: 67% of the breakages (6,889 out of 10,816) that
we analyze are stale breakages. On the project level, staleness of
breakages ranges from 7% to 96% with a median of 50%. In the
eirslett/frontend-maven-plugin15 project, where we observe the max-
imum percentage of stale breakages (96%), it was due to the same
dependency resolution failure recurring in 23 builds.

Two of every three build breakages (67%) that we analyze
are stale.

3.4 Signal-To-Noise Ratio

Motivation. In previous analyses, we find that build breakages that
are ignored by developers and build successes that include ignored
breakages can introduce noise in build outcome data. However, the
overall rate of noise in build outcome data is not yet clear. Such an
overview is useful for researchers who use build outcome data in
their work, to better understand the degree to which noise may be
impacting their analyses.

Approach. To quantify the proportion of noise in build outcome
data caused by passively and actively ignored build breakage, we

15https://github.com/eirslett/frontend-maven-plugin

5

6

7

8

9

10

0 100 200 300 400 500

Build Failure Sequence Length Threshold (tc)

S
ig

n
a

l−
to

−
N

o
is

e
 R

a
tio

Parameter

Overall

Branches−only

Figure 6: For every 11 builds there is at least one build
with an incorrect status. The Signal-To-Noise ratio increases
when a higher build breakage sequence length is chosen.

adopt the Signal-To-Noise ratio (SNR) as follows:

SNR =
#TrueBuildBreakages + #TrueBuildSuccesses
#FalseBuildBreakages + #FalseBuildSuccesses (1)

where #TrueBuildBreakages (i.e., signal) is the number of broken
builds that are not ignored by developers, #TrueBuildSuccesses (i.e.,
signal) is the number of passing builds without ignored breakages,
#FalseBuildBreakages (i.e., noise) is the number of broken builds
that are ignored by developers, and #FalseBuildSuccesses (i.e., noise)
is the number of passing builds with ignored breakages.

To compute #FalseBuildBreakages, a threshold tc must be selected
such that if the number of consecutive broken builds is above tc ,
all builds in such sequences are considered false build breakages.
Instead of picking any particular tc value, we plot an SNR curve as
the threshold (tc) is changed.

Results. Figure 6 shows the SNR curve for the subject systems.

Observation 5: As tc decreases from 485 to 1, the SNR decreases
from 10.62 to 6.39. Since #FalseBuildSuccesses is not impacted by tc ,
the maximum SNR is observed when #FalseBuildBreakages is zero
(i.e., when tc is set to the maximum value). The minimum of SNR
is observed when tc is one and therefore all broken builds that are
not immediately fixed are considered false build breakages. If false
breakages are defined to be only in consecutive breakages with
branches in them, the Signal-to-Noise ratio ranges from 10.19 to
10.62.

One in every 7 to 11 builds (9%–14%) is incorrectly labelled.
This noise may influence analyses based on build outcome
data.

4 HETEROGENEITY IN BUILD BREAKAGE
DATA

The way in which builds are configured and triggered vary from
project to project. This heterogeneity should be taken into con-
sideration when designing studies of build breakage. Below, we
demonstrate build heterogeneity using three criteria.

Build
Medic

BLIMP
Tracer

Linked
reviews…

Noise in
build data…

@SoftwareREBELs
rebels.ece.mcgill.ca

