
© 2019 IBM Corporation

Enabling GraphQL Adoption

2nd Vienna Software Seminar

Erik Wittern - IBM Research
@ErikWittern
witternj@us.ibm.com

2Page© 2019 IBM Corporation

What is GraphQL?

• A query language for networked APIs…
• …and a runtime for servers to fulfill queries

Response: {“data”: …}

POST {“introspection”: …}

{“schema”: …}

DB

API

Se
rv

er

• Clients send type-checked queries, servers respond with requested data:

GraphQL client (here: GraphiQL)

• Specification + reference implementations

Request: POST {“query”: …}

3Page© 2019 IBM Corporation

Why GraphQL?

• Serve diverse & changing client requirements with one API providers

• API evolution providers / consumers
• Schema extensions
• Deprecation messages built-in

• Resource composition (APIs, DBs, Cloud functions…) providers / consumers

• Operations and performance providers / consumers
• Fewer roundtrips
• No over-fetching

• Great developer experience consumers
• Type-checked API (auto-completion, validation)
• Tooling like GraphiQL
• Documentation built-in

4Page© 2019 IBM Corporation

Challenge: How can we help REST APIs providers in
adopting GraphQL?

GraphQL

types

resolvers

5Page© 2019 IBM Corporation

An example:

{
“openapi”: “3.0.0”,
”paths”: {

“/users/{user-name}”: {
“parameters”: [{

“name”: user-name“,
“in”: “path”

}],
“responses”:

“200”: {
“content”: {

“application/json”: {
“schema”: {

“$ref”:
“#/components/schema/user”

OAS.json

Interesting challenges:
• Idiomatic naming of types and their fields
• Using link definitions to enable nested

queries
• (De-) sanitation of data at runtime
• Authentication, pagination, caching…

6Page© 2019 IBM Corporation

Dissemination: OpenAPI-to-GraphQL

https://github.com/ibm/openapi-to-graphql2018 ICWE paper
https://arxiv.org/abs/1809.08319

https://github.com/ibm/openapi-to-graphql
https://arxiv.org/abs/1809.08319

7Page© 2019 IBM Corporation

Challenge: How to manage GraphQL APIs?

• Goal: provide management capabilities for GraphQL
(think threat prevention, rate limiting, access control etc.)

• Challenge: highly diverse, client-defined queries

query fetchAllTheData {
users (limit: 1000) {
orders (first: 1000) {
paymentDetails { status }

}
}

}

• Solution approach: static query analysis – i.e., try to understand what a query
intends to do prior to execution

Equivalent to ~1000s
of REST requests!

8Page© 2019 IBM Corporation

Static analysis of a query

{
operationType: "query",
maxNesting: 3,
resolverCounts: {
Query.users: 1,
User.pastEmployers: 5

},
typeCounts: {
User: 5,
Employer: 10

},
resolveComplexity: 6,
typeComplexity: 15

}

Think threat
prevention…

Think
rates…

query {
users (first: 5) {

name
pastEmployers (limit: 2) {

name
}

}
}

Think access
control

(RBAC) or
pricing…

9Page© 2019 IBM Corporation

GraphQL Management: Architecture

GraphQL API Management
Middleware

Network gateway

Policy definition &
configuration

Parsing

Validation

policy, config.

Policy
enforcement

sch
ema

Static
analysis

Query inspection

Complexities
Resolve complexity: 3 (allowed: 30)
Type complexity: 5 (allowed: 100)

query
(if allowed)

GraphQL client

Initiali-
zation

introspection Se
rv

er

DB

API

inspection

query

10Page© 2019 IBM Corporation

“Enabling GraphQL Adoption” by…

§ Helping REST API providers quickly experiment with GraphQL
• OpenAPI-to-GraphQL @ https://github.com/ibm/openapi-to-graphql

§ Offering GraphQL API management
• Prototypical implementation, evaluation, and ongoing productization with API Connect &

DataPower Gateway

§ Addressing further challenges in the future:
• Composing…

– …diverse backend resources
– …GraphQL schemas (schema stitching, federation)

• Transactions
• (Distributed) schema development and maintenance
• Etc.

https://github.com/ibm/openapi-to-graphql

Thank you!

