
Paths to Production –
Pipelines in Practice
Robert Chatley	
rbc@imperial.ac.uk

!

@rchatley

Robert Chatley is a Principal Teaching Fellow in
Software Engineering at Imperial College London, but
coming from an industrial background. This presentation
focusses on observations from various consulting projects
with different companies on how continuous delivery is
done (or not).

Build

Idea Product

class Server {!!
 public void do(Requ  
 !
 if (req.getHeader(.  
 req.getParameter(!!
 !!
 index.search(“..”)  
 }!
 }!
}

Release

Many development teams have adopted agile methods
over the last 10-15 years, and within their teams many are
doing well, employing user stories, TDD etc to build
product increments. But sometimes releasing these
increments to production is hard.

Sometimes the provisioning/infrastructure part causes
trouble. The “last mile” is hard. Jez and Dave wrote a lot
about this in their great book Continuous Delivery. They
have a lot of practices that when joined together, enable
us to have a pipeline leading all the way to production in
a reliable repeatable way.

A
na

ly
si

s

O
peration

Approval

Validation
In working with teams I often use a chart that I call a
Release Cycle Map to help the team to think about all the
activities between someone having an idea for a feature,
through that feature being prioritised, developed, tested,
released, and ideally measured in terms of value
delivered. !
The stages are (anticlockwise from top left):
Product Vision, Planning + Priority, Development Tools,
Quality Assurance, Release Process,
Production Platform, User Community
and Measure Value.

The next slide shows an example of the Release Cycle
Map completed for a team in an investment bank building
an internal application with business users.

Blurred for anonymity. This team’s release process was
controlled by a separate ops team, who required a
conversation on a weekly conference call in order to
approve releases. Releasing more than once per week was
practically impossible.

The next slide shows an example of the Release Cycle
Map completed for a team in a startup building an iPhone
application with a node.js backend deployed to AWS.

Blurred for anonymity. The small organisation had little
bureaucracy, the backend team could release to AWS
pretty much whenever they liked, but releasing a new
version of the iPhone app required approval by Apple,
and release through the app store, which could easily take
a couple of weeks.

CI Server

build + test

S3

ami-743bf22d!

APP v153

Server
i-325aa125

YourApp 
v153.zip

YourApp 
v153

To deploy in AWS with immutable infrastructure, the
team set up their CI server to “bake” AMIs as the output
artefact by taking a snapshot of a running instance with
the new software installed, store the AMIs in S3, and then
deploy these into an auto-scaling group.

The next example is from a large media organisation.

This organisation is moving from deployment through a
central ops team, to each team deploying its own software
to AWS, but through a tool provided by a central platform
team. This gives a consistent deployment process across
teams.

Build artifacts…

Deploy Tool

...v37, v38, v39, v40

Jenkins

...v37, v38, v39, v40

Git S3YourApp 
v39

RPM 
Repo

They set their CI builds to produce RPMS, and on a
successful build of new RPMs, inform the Deploy Tool of
the new version being available, ready for deployment.

Deply Tool

deploy to int

S3
ami-743bf22d!

APP v39

Server

YourApp 
v39

YourApp 
v39

then bake and deploy

YourApp 
v38

YourApp 
v40

Integration

v39

Once the RPMs are available, and a deploy is triggered,
an AMI is baked and released into an autoscaling group,
as with the startup example before.

Photo by Betsy Weber These techniques all allow us to get product increments
into production more smoothly, but n his book The Lean
Startup, Eric Ries stresses the importance of producing
“validated learning” from each iteration that you perform,
not just releasing more code. What if you expend a lot of
energy (and cash) to deliver a function that no-one cares
about (or worse, hates) - but you have no way of
measuring the perceived value.	!
We encourage thinking about the success criteria during
the definition of each user story, and making the
collection of appropriate data part of the delivery of each
story.	

In the banking environment, one feature was suggested
by the product owner to change a free text input into a
drop down box. But which values to put in the drop
down? An experiment was run by adding one line of code
to log each value typed into the box by users, so that
these could be ranked to make a data-driven decision. But
releasing that one line took a whole week. A faster
(without a separate ops organisation) release process
w o u l d h a v e a l l o w e d f o r m o r e c o n t i n u o u s
experimentation.

Any Questions?

Robert Chatley	
rbc@imperial.ac.uk	
 @rchatley

