Mining Build Changes to
Automatically Repair Build Breakage

Shane Mcintosh

¥ McGill

W @witschiii

christian.macho@aau.at

Motivation

Motivation

) GitHub

© Bitbucket

Motivation

) GitHub

£
i‘:@

Jenkins

© Bitbucket

¥ Travis Cli

Motivation

e
) GitHub

é:\é
Jenkins

L))

© Bitbucket

—->Teams gather immediate feedback on changes
- Improve productivity

Travis Ci

B. Vasilescu et al., "Quality and productivity outcomes relating to continuous integration in github", ESEC/
FSE 2015.

‘there’s
no such thing
as a free
lunch.”

Motivation

 Cl Trade-offs

— Increase of maintenance

* Includes maintenance of
build specifications

* Neglected maintenance
— Build breakage

M. Hilton et al., "Trade-Offs in Continuous Integration: Assurance, Security, and Flexibility”, ESEC/FSE 2017
B. Adams et al., "The evolution of the linux build system", EASST 2007
H. Seo et al., "Programmers’ build errors: a case study (at google)", ICSE 2014

Motivation

* Developers need to
fix the breakage

- blocked

* Large SW company

— 900 man hours fixing
build breakage

N. Kerzazi et al., "Why do automated builds break? an empirical study”, ICSME 2014

Motivation

Build Breakage
— Tests

— Compiling

— Dependencies

Reports of dependency-related breakage
—39% - 65%

H. Seo et al., "Programmers’ build errors: a case study (at google)", ICSE 2014
M. Sulir et al., "A quantitative study of Java software buildability", PLATEAU 2016,
M. Tufano et al., "There and back again: Can you compile that snapshot? “, JSS vol 29/4, 2017

ir?

]
How to repa

Research Questions

Research Questions

(RQ1)

Strategies?

How do developers repair
dependency-related build
breakage?

Research Questions

(RQ1)

Strategies?

How do developers repair
dependency-related build
breakage?

(RQ2)

Automation?

L,

s |
y “/\
.2 z03
P oe [\

N

To what extent can we
automatically repair
dependency-related build
breakage?

Data Preparation — Projects

* GitHub projects (top-1000 stars)
— Maven
— >500 commits
— actively developed
— build without manual setup/intervention

223 projects
— different sizes, vendors, and purposes

Data Preparation — Process

Extract Extract
Build Filter Pairs Build Split Data
Details Changes

Build

Revisions

Data Preparation — Build Revisions

e December 2014 > commit date > July 2017
* Mitigate ecosystem-related build failures
* But TravisTorrent?

e Yes— but
— Build results can be unreliable
— Depend on the environment

e = Build in our environment

M. Zolfagharinia et al., "Do not trust build results at face value: an empirical study of 30 million CPAN
builds"”, MSR 2017

Extract Extract

Build
Revisions

Build . Filter Pairs
Details

Build Split Data
Changes

Data Preparation — Build Revisions

* mvn -U clean package -DskipTest=true
— Force check for update
— Ignore tests > focus on build errors

[INFO] hazelcast—JCamrar ..ot n ittt teeeeeeeeneeeeeeennens SKIPPED
[INFO] hazelcast-bulld—Utils v i vttt ittt eeeneeeeeeeeeeeens SKIPPED
[INFO] == mmm o m oo oo oo
[INFO] BUILD FAILURE

[INFO] ——m o m o mm oo oo -
[INFO] Total time: 11.363 s

[INFO] Finished at: 2017-07-07T03:29:37+02:00

[INFO] Final Memory: 41M/1441M

[INFO] ——mmmmm o m oo oo

Extract
Build Split Data

Extract
Build
Details

o Filter Pairs
Revisions
Changes

Data Preparation — Build Details

 MavenlLogAnalyzer (MLA)
* Build result taxonomy

SUCCESS
DEPENDENCY_ RESOLUTION_FAILED
TEST _EXECUTION_FAILED
COMPILATION_FAILED

Build Extract Extract
R Build u Filter Pairs Build
Details Changes

Split Data

Data Preparation — Build Details

 MavenlLogAnalyzer (MLA)
* Build result taxonomy

SUCCESS
DEPENDENCY_RESOLUTION_FAILED

TEST _EXECUTION_FAILED

COMPILATION_FAILED

Build Extract Extract
Revisions = Build u Filter Pairs % Build
Details Changes

Data Preparation — Filter Pairs

Old Commit ID Old Build Result New Commit ID New Build Result

a34b2ad DEP_FAILED ef8ad8c SUCCESS
TEST_FAILED TEST_FAILED
DEP_FAILED DEP_FAILED
SUCCESS DEP_FAILED
DEP_FAILED SUCCESS

Build Extract Extract

Build {3 Filter Pairs

Build Bl Split Data
Details

Revisions Changes

Data Preparation — Filter Pairs

Old Commit ID Old Build Result New Commit ID New Build Result

a34b2ad DEP_FAILED ef8ad8c SUCCESS
TEST_FAILED TEST_FAILED
DEP_FAILED DEP_FAILED
SUCCESS DEP_FAILED
DEP_FAILED SUCCESS

—> Filter repairing commits

Build Extract Extract

Build Filter Pairs g% Build Bl Split Data

HSEel Details Changes

Data Preparation — Build Changes

e BuildDiff
— Transform pom.xml into two trees

— Extend GumTree algorithm

* Only match nodes of same type (e.g. dependency)
* Maven triplet (grouprd, artifactid, version)

* Use 1atag

* Levenshtein similarity > t (best: t = 0.65)

— Output: edit operations (add/del/upd/mv)

J.-R. Falleri et al., "Fine-grained and accurate source code differencing", ASE 2014
C. Macho et al., "Extracting Build Changes with BuildDiff", MSR 2017

Extract Extract
Build _ Filter Pairs e Build
Details Changes

Build

Revisions Split Data

Data Preparation — Build Changes

 Map changes

— Edit operation = Build Change and Build Change
Category (Taxonomy, available online)

Build Extract Extract
" B Build N Filter Pairs | Build u Split Data
Revisions .
Details Changes

Taxonomy - Example

<dependency>
<groupld>org.springframework</groupld>
<artifactId>spring-core</artifactId>
<version>4.2.5.RELEASE</version>
</dependency>

<dependency>
<groupld>org.springframework</groupld>
<artifactId>spring-core</artifactId>
<version>4.2.6.RELEASE</version>
</dependency>

Taxonomy - Example

<dependency>
<groupld>org.springframework</groupld>
<artifactId>spring-core</artifactId>

<version>k.2.5LRELEASE</version>
</dependency>

<dependency>
<groupld>org.springframework</groupIld>
<artifactId>spring-core</artifactId>
<version>ﬁ.2.6[RELEASE</version>

</dependency>

Taxonomy - Example

<dependency>
<groupld>org.springframework</groupld>
<artifactId>spring-core</artifactId>

<version>k.2.5[RELEASE</verSion>
</dependency>

DEPENDENCY VERSION UPDATE

LLLLLLLLLLLLLLL j N U A /M-I—\.a—l—-l—k/t\/kz—l—\/l—
<version>ﬁ.2.6lRELEASE</version>
</dependency>

Data Preparation — Build Changes

» 2 research questions
— 30/70 data split
— 37 pairs (RQ1) / 88 pairs (RQ2)

Build Extract Extract
" - Build Ol Filter Pairs [Build BB Split Data
Revisions . '
Details Changes

Research Questions

(RQ1)

Strategies?

How do developers repair
dependency-related build
breakage?

Approach

* Quantitative Analysis

— Frequency of build changes (categories) involved
In repairing pairs
- Number of revisions

— Categories according to the purpose of the change
(e.g., property change)

20

15+

10—

DD

DVU PRVU

DU

Results

GPD

GPI

MD

PAVU

PI

MDU MDVU MU

PCU

20

15

10—

18

Results

GPU DD DvU PRVU DU Mi GPD GPI MD PU MDI PAVU Pl

\

DEPENDENCY_VERSION_UPDATE

DEPENDENCY_DELETE

GENERAL_PROPERTY_UPDATE

RD

MDU MDVU MU

PCU

25

20

15

10

Version
Change

Property
Change

Results

Dependency
Delete

Dependency
ID Change

2

Repository
Change

2

Dependency
Insert

Approach

* Qualitative Analysis
— Build changes (categories) actually repaired
— Manually analyze the change(s) that repaired

Results

» 27/37 revisions repaired with single change

15

10

14

3

3

2

0

0

Property
Change

Dependency
Delete

Version
Change

Repository
Change

Dependency
ID Change

Others

Dependency
Insert

Results

» 27/37 revisions repaired with single change

* Property Change?

15

10

— Refer to version changes

14

3

3

2

0

0

Property
Change

Dependency
Delete

Version
Change

Repository
Change

Dependency
ID Change

Others

Dependency
Insert

» 27/37 revisions repaired with single change

Results

15

- Repair strategies!

10

Property
Change

Results

» 27/37 revisions repaired with single change

* Property Change?

15

10

— Refer to version changes

14

3

3

2

0

0

Property
Change

Dependency
Delete

Version
Change

Repository
Change

Dependency
ID Change

Others

Dependency
Insert

Strategies

* Version Update
— |dentify failing dependency
— Remove “-SNAPSHOT“
— Update version (MAJOR.MINOR.PATCH)
distance = abs(10000 % (V1ma; — V2ma;) + 100
(V1min — V2min) + (V1pas — V2pat))

* Dependency Delete

 Add Repository

S. Raemaekers et al., “Semantic Versioning versus Breaking Changes : A Study of the Maven Repository”
SCAM 2014

Research Questions

(RQ2)

Automation?

7 Oﬂ@x
| s o SN AN

4

To what extent can we
automatically repair
dependency-related build
breakage?

Approach

Project Maven Build Log

Repair Plan Generation

v

—>> Parse Build Log

Repair Plan(s)

Repaired
Repaired

¢ Not Repaired

Apply Repair Strategy

v

Build Revision

BuildMedic

async-http-client 1 (100%)

immutables

1 (100%)

closure-compiler1 (100%)

symphony

wildfly
YCSB

alluxio
libgdx

hazelcast

Total

4 (57%)
0 (0%)

1 (20%)
10 (37%)
5 (100%)
7 (50%)

45 (54%)

Results
Project |Fixed |NotFixed |n=1 [ID [smM |

0 (0%)

0 (0%)

0 (0%)

3 (43%)
1 (100%)
4 (80%)
17 (63%)
0 (0%)

7 (50%)

39 (46%)

0 (0%)

1 (100%)
1 (100%)
4 (100%)
-(-)

1 (100%)
3 (30%)
5 (100%)
7 (100%)

34 (76%)

0 (0%)

1 (100%)
1 (100%)
2 (50%)
-(-)

0 (0%)

1 (10%)
1 (20%)
7 (100%)

16 (36%)

0 (0%)

0 (0%)

0 (0%)

2 (50%)
-(-)

1 (100%)
7 (70%)
3 (60%)
0 (0%)

20 (44%)

async-http-client 1 (100%)

immutables

1 (100%)

closure-compiler1 (100%)

symphony

wildfly
YCSB

alluxio
libgdx

hazelcast

Total

4 (57%)
0 (0%)

1 (20%)
10 (37%)
5 (100%)
7 (50%)

45 (54%

Results
Project |Fixed |NotFixed |n=1 [ID [smM |

0 (0%)

0 (0%)

0 (0%)

3 (43%)
1 (100%)
4 (80%)
17 (63%)
0 (0%)

7 (50%)

39 (46%)

0 (0%)

1 (100%)
1 (100%)
4 (100%)
-(-)

1 (100%)
3 (30%)
5 (100%)
7 (100%)

34 (76%)

0 (0%)

1 (100%)
1 (100%)
2 (50%)
-(-)

0 (0%)

1 (10%)
1 (20%)
7 (100%)

16 (36%

0 (0%)

0 (0%)

0 (0%)

2 (50%)
-(-)

1 (100%)
7 (70%)
3 (60%)
0 (0%)

20 (44%) |

async-http-client 1 (100%)

immutables 1 (100%)
closure-compiler1 (100%)
symphony 4 (57%)
wildfly 0 (0%)
YCSB 1 (20%)
alluxio 10 (37%)
libgdx
hazelcast mﬂ
Total

Results
Project |Fixed |NotFixed |n=1 [ID [smM |

0 (0%)
0 (0%)
0 (0%)
3 (43%)

I1(100%) |

4 (80%)
17 (63%)
0 (0%)

7 (50%)

39 (46%)

0 (0%)

1 (100%)
1 (100%)
4 (100%)
-(-)

1 (100%)
3 (30%)
5 (100%)
7 (100%)

34 (76%)

0 (0%)

1 (100%)
1 (100%)
2 (50%)
-(-)

0 (0%)

1 (10%)
1 (20%)

7 (100%] |

16 (36%)

0 (0%)

0 (0%)

0 (0%)

2 (50%)
-(-)

1 (100%)
7 (70%)
3 (60%)
0 (0%)

20 (44%) |

Performance?

Performance

Total time: 4 — 61 minutes (22.8 average)

Overhead: 1.5 — 35 minutes (8.6 average)

Applications/Implications

* Build Breakage can often be repaired with a
single change

* Version Update most frequent change

e Build Medic can support developers

— Post build action
— Standalone tool

Motivation

) GitHub F

Jenkins

9 Bitbucket Travis Cl

—>Teams gather immediate feedback on changes
- Improve productivity

B. Vasilescu et al., "Quality and productivity outcomes relating to continuous integration in github", ESEC/
FSE 2015.

/=%

Motivation

) GitHub F

Jenkins

AT .
€ Travis Cl

-

O Bitbucket

—>Teams gather immediate feedback on changes
- Improve productivity

B. Vasilescu et al., "Quality and productivity outcomes relating to continuous integration in github", ESEC/
FSE 2015.

Research Questions

(RQ1)
Strategies?

A S~

How do developers repair
dependency-related build
breakage?

(RQ2)
Automation?

AL

To what extent can we
automatically repair
dependency-related build
breakage?

Motivation

Research Questions

&

v

e
Jenkins

AT i
€ Travis Cl

-

) GitHub

O Bitbucket

—>Teams gather immediate feedback on changes
- Improve productivity

B. Vasilescu et al., "Quality and productivity outcomes relating to continuous integration in github", ESEC/

(RQ1)
Strategies?

» 9 9

A IS~

How do developers repair
dependency-related build
breakage?

(RQ2)
Automation?

4 2
r @ O+
Fq) e &% [\

To what extent can we
automatically repair
dependency-related build
breakage?

FSE 2015.

@/=% @ /=

Results

» 27/37 revisions repaired with single change

— Repair strategies!

Property Dependency Version

0si Dependency Others Dependency
Change Delete Change Change

@ /=%

Motivation

) GitHub

© Bitbucket

—>Teams gather immediate feedback on changes
- Improve productivity

B. Vasilescu et al., "Quality and productivity outcomes relating to continuous integration in github", ESEC/
FSE 2015.

Results

» 27/37 revisions repaired with single change

— Repair strategies!

3 3
‘ 2

0 0

Property Dependency Version Repository Dependency Others Dependency
Change Delete Change Change ID Change Insert

Research Questions

(RQ1) (RQ2)
Strategies? Automation?
tx
oY= -
v Py - (AN
How do developers repair To what extent can we
dependency-related build automatically repair
breakage? dependency-related build
breakage?
Results
Project | Fixed __INotfixed |ns1 ___[D ____[sm
async-http-client 1 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
immutables 1 (100%) 0 (0%) 1 (100%) 1 (100%) 0 (0%)
closure-compiler 1 (100%) 0 (0%) 1 (100%) 1 (100%) 0 (0%)
symphony 4 (57%) 3 (43%) 4 (100%) 2 (50%) 2 (50%)
wildfly 0(0%) -() -() -()
YCSB 1 (20%) 4 (80%) 1 (100%) 0 (0%) 1 (100%)
alluxio 10 (37%) 17 (63%) 3 (30%) 1 (10%) 7 (70%)
libgdx 0 (0%) 5 (100%) 1 (20%) 3 (60%)

hazelcast 7 (50% 7 (50%) 7 (100%) 100% 0 (0%)

Total 45 (54% 39 (46%) 34 (76%) 116 (36%)| [20(44%) |

