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—->Teams gather immediate feedback on changes
- Improve productivity

Travis Ci

B. Vasilescu et al., "Quality and productivity outcomes relating to continuous integration in github", ESEC/
FSE 2015.
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Motivation

 Cl Trade-offs

— Increase of maintenance

* Includes maintenance of
build specifications

* Neglected maintenance
— Build breakage

M. Hilton et al., "Trade-Offs in Continuous Integration: Assurance, Security, and Flexibility”, ESEC/FSE 2017
B. Adams et al., "The evolution of the linux build system", EASST 2007
H. Seo et al., "Programmers’ build errors: a case study (at google)", ICSE 2014



Motivation

* Developers need to
fix the breakage

- blocked

* Large SW company

— 900 man hours fixing
build breakage

N. Kerzazi et al., "Why do automated builds break? an empirical study”, ICSME 2014



Motivation

Build Breakage
— Tests

— Compiling

— Dependencies

Reports of dependency-related breakage
—39% - 65%

H. Seo et al., "Programmers’ build errors: a case study (at google)", ICSE 2014
M. Sulir et al., "A quantitative study of Java software buildability", PLATEAU 2016,
M. Tufano et al., "There and back again: Can you compile that snapshot? “, JSS vol 29/4, 2017
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To what extent can we
automatically repair
dependency-related build
breakage?




Data Preparation — Projects

* GitHub projects (top-1000 stars)
— Maven
— >500 commits
— actively developed
— build without manual setup/intervention

223 projects
— different sizes, vendors, and purposes
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Data Preparation — Build Revisions

e December 2014 > commit date > July 2017
* Mitigate ecosystem-related build failures
* But TravisTorrent?

e Yes— but
— Build results can be unreliable
— Depend on the environment

e = Build in our environment

M. Zolfagharinia et al., "Do not trust build results at face value: an empirical study of 30 million CPAN
builds"”, MSR 2017

Extract Extract

Build
Revisions

Build . Filter Pairs
Details

Build Split Data
Changes




Data Preparation — Build Revisions

* mvn -U clean package -DskipTest=true
— Force check for update
— Ignore tests > focus on build errors

[INFO] hazelcast—JCamrar ..ot n ittt teeeeeeeeneeeeeeennens SKIPPED
[INFO] hazelcast-bulld—Utils v i vttt ittt eeeneeeeeeeeeeeens SKIPPED
[INFO] == mmm o m oo oo oo
[INFO] BUILD FAILURE

[INFO] ——m o m o mm oo oo -
[INFO] Total time: 11.363 s

[INFO] Finished at: 2017-07-07T03:29:37+02:00

[INFO] Final Memory: 41M/1441M

[INFO] ——mmmmm o m oo oo

Extract
Build Split Data

Extract
Build
Details

o Filter Pairs
Revisions
Changes




Data Preparation — Build Details

 MavenlLogAnalyzer (MLA)
* Build result taxonomy

SUCCESS
DEPENDENCY_ RESOLUTION_FAILED
TEST _EXECUTION_FAILED
COMPILATION_FAILED
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Data Preparation — Build Details

 MavenlLogAnalyzer (MLA)
* Build result taxonomy

SUCCESS
DEPENDENCY_RESOLUTION_FAILED

TEST _EXECUTION_FAILED

COMPILATION_FAILED

Build Extract Extract
Revisions = Build u Filter Pairs % Build
Details Changes




Data Preparation — Filter Pairs

Old Commit ID Old Build Result New Commit ID New Build Result

a34b2ad DEP_FAILED ef8ad8c SUCCESS
TEST_FAILED TEST_FAILED
DEP_FAILED DEP_FAILED
SUCCESS DEP_FAILED
DEP_FAILED SUCCESS

Build Extract Extract

Build {3 Filter Pairs

Build Bl Split Data
Details

Revisions Changes




Data Preparation — Filter Pairs

Old Commit ID Old Build Result New Commit ID New Build Result

a34b2ad DEP_FAILED ef8ad8c SUCCESS
TEST_FAILED TEST_FAILED
DEP_FAILED DEP_FAILED
SUCCESS DEP_FAILED
DEP_FAILED SUCCESS

—> Filter repairing commits

Build Extract Extract

Build Filter Pairs g% Build Bl Split Data

HSEel Details Changes




Data Preparation — Build Changes

e BuildDiff
— Transform pom.xml into two trees

— Extend GumTree algorithm

* Only match nodes of same type (e.g. dependency)
* Maven triplet (grouprd, artifactid, version)

* Use 1atag

* Levenshtein similarity > t (best: t = 0.65)

— Output: edit operations (add/del/upd/mv)

J.-R. Falleri et al., "Fine-grained and accurate source code differencing", ASE 2014
C. Macho et al., "Extracting Build Changes with BuildDiff", MSR 2017

Extract Extract
Build _ Filter Pairs e Build
Details Changes

Build

Revisions Split Data




Data Preparation — Build Changes

 Map changes

— Edit operation = Build Change and Build Change
Category (Taxonomy, available online)

Build Extract Extract
" B Build N Filter Pairs | Build u Split Data
Revisions .
Details Changes




Taxonomy - Example

<dependency>
<groupld>org.springframework</groupld>
<artifactId>spring-core</artifactId>
<version>4.2.5.RELEASE</version>
</dependency>

<dependency>
<groupld>org.springframework</groupld>
<artifactId>spring-core</artifactId>
<version>4.2.6.RELEASE</version>
</dependency>



Taxonomy - Example

<dependency>
<groupld>org.springframework</groupld>
<artifactId>spring-core</artifactId>

<version>k.2.5LRELEASE</version>
</dependency>

<dependency>
<groupld>org.springframework</groupIld>
<artifactId>spring-core</artifactId>
<version>ﬁ.2.6[RELEASE</version>

</dependency>




Taxonomy - Example

<dependency>
<groupld>org.springframework</groupld>
<artifactId>spring-core</artifactId>

<version>k.2.5[RELEASE</verSion>
</dependency>

DEPENDENCY VERSION UPDATE

LLLLLLLLLLLLLLL j N U A /M-I—\.a—l—-l—k/t\/kz—l—\/l—
<version>ﬁ.2.6lRELEASE</version>
</dependency>




Data Preparation — Build Changes

» 2 research questions
— 30/70 data split
— 37 pairs (RQ1) / 88 pairs (RQ2)

Build Extract Extract
" - Build Ol Filter Pairs [ Build BB Split Data
Revisions . '
Details Changes
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breakage?




Approach

* Quantitative Analysis

— Frequency of build changes (categories) involved
In repairing pairs
- Number of revisions

— Categories according to the purpose of the change
(e.g., property change)
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Approach

* Qualitative Analysis
— Build changes (categories) actually repaired
— Manually analyze the change(s) that repaired



Results

» 27/37 revisions repaired with single change
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Results

» 27/37 revisions repaired with single change

* Property Change?
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» 27/37 revisions repaired with single change
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Strategies

* Version Update
— |dentify failing dependency
— Remove “-SNAPSHOT“
— Update version (MAJOR.MINOR.PATCH)
distance = abs(10000 % (V1ma; — V2ma;) + 100
(V1min — V2min) + (V1pas — V2pat))

* Dependency Delete

 Add Repository

S. Raemaekers et al., “Semantic Versioning versus Breaking Changes : A Study of the Maven Repository”
SCAM 2014
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To what extent can we
automatically repair
dependency-related build
breakage?




Approach

Project Maven Build Log

Repair Plan Generation

v

—>> Parse Build Log

Repair Plan(s)

Repaired
Repaired

¢ Not Repaired

Apply Repair Strategy

v

Build Revision

BuildMedic




async-http-client 1 (100%)

immutables

1 (100%)

closure-compiler1 (100%)

symphony

wildfly
YCSB

alluxio
libgdx

hazelcast

Total

4 (57%)
0 (0%)

1 (20%)
10 (37%)
5 (100%)
7 (50%)

45 (54%)

Results
Project  |Fixed  |NotFixed |n=1  [ID  [smM |

0 (0%)

0 (0%)

0 (0%)

3 (43%)
1 (100%)
4 (80%)
17 (63%)
0 (0%)

7 (50%)

39 (46%)

0 (0%)
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1 (100%)
4 (100%)
-(-)

1 (100%)
3 (30%)
5 (100%)
7 (100%)

34 (76%)

0 (0%)
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2 (50%)
-(-)

0 (0%)

1 (10%)
1 (20%)
7 (100%)

16 (36%)

0 (0%)

0 (0%)

0 (0%)

2 (50%)
-(-)

1 (100%)
7 (70%)
3 (60%)
0 (0%)

20 (44%)
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async-http-client 1 (100%)

immutables 1 (100%)
closure-compiler1 (100%)
symphony 4 (57%)
wildfly 0 (0%)
YCSB 1 (20%)
alluxio 10 (37%)
libgdx
hazelcast mﬂ
Total

Results
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Performance

Total time: 4 — 61 minutes (22.8 average)

Overhead: 1.5 — 35 minutes (8.6 average)



Applications/Implications

* Build Breakage can often be repaired with a
single change

* Version Update most frequent change

e Build Medic can support developers

— Post build action
— Standalone tool
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B. Vasilescu et al., "Quality and productivity outcomes relating to continuous integration in github", ESEC/
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Results

» 27/37 revisions repaired with single change

— Repair strategies!

Property Dependency Version

0si Dependency Others Dependency
Change Delete Change Change
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Motivation

) GitHub

© Bitbucket

—>Teams gather immediate feedback on changes
- Improve productivity

B. Vasilescu et al., "Quality and productivity outcomes relating to continuous integration in github", ESEC/
FSE 2015.

Results

» 27/37 revisions repaired with single change

— Repair strategies!

3 3
‘ 2

0 0

Property Dependency Version Repository Dependency Others Dependency
Change Delete Change Change ID Change Insert

Research Questions

(RQ1) (RQ2)
Strategies? Automation?
tx
oY= -
v Py - (AN
How do developers repair To what extent can we
dependency-related build automatically repair
breakage? dependency-related build
breakage?
Results
Project | Fixed __INotfixed |ns1 ___[D ____[sm
async-http-client 1 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
immutables 1 (100%) 0 (0%) 1 (100%) 1 (100%) 0 (0%)
closure-compiler 1 (100%) 0 (0%) 1 (100%) 1 (100%) 0 (0%)
symphony 4 (57%) 3 (43%) 4 (100%) 2 (50%) 2 (50%)
wildfly 0(0%) -() -() -()
YCSB 1 (20%) 4 (80%) 1 (100%) 0 (0%) 1 (100%)
alluxio 10 (37%) 17 (63%) 3 (30%) 1 (10%) 7 (70%)
libgdx 0 (0%) 5 (100%) 1 (20%) 3 (60%)

hazelcast 7 (50% 7 (50%) 7 (100%) 100% 0 (0%)

Total 45 (54% 39 (46%) 34 (76%) 116 (36%)|  [20(44%) |




