
1

An Architecture for
Self-Organizing
Continuous Delivery Pipelines

1st Vienna Software Seminar Andreas Steffens
a.steffens@swc.rwth-aachen.de

At an abstract level, a deployment pipeline is an
automated manifestation of your process for
getting software from version control into the
hands of your users.

Humble, Farley

3

Relation of Architecture and Continuous Delivery

4

commit

git

test

release

=

Heterogeneity

• Commit
• Unit Test
• Performance Test
• Security
• UAT
• Release
• Provision

5

• Deploy
• Baking
• Static/Dynamic Analysis
• Manual Approval
• Apply Policies
• Monitor
• Operate/Run

DEV QA EAM OPSBIZSEC

More heterogeneity in the software delivery process

Technical Heterogeneity

6

7

Technology Radar 2016:
Anti-Pattern “A single CI instance for all teams”

Build Monolith

Build Hero

Relation of Architecture and Continuous Delivery

8

commit

git

test

release

domain

persistence

UI

db

Evolution
• Process steps
• Technologies
• Policies
• Architecture decisions

Impact of Architecture
Software Development Process

Requirements

Challenges

• Pipeline model:
"The build system [..] or scripts

are complicated or complex"

• Pipeline system:
“The build system cannot be modified flexibly”

9

Laukkanen. Itkonen, Lassenius
“Problems, causes and solutions when adopting continuous delivery—A systematic literature review”

Information and Software Technology (Feb. 2017)

Tackling Variability & Heterogeneity

The pipeline is a member of the software development
process as the software itself

1. Requirements
2. Design/Architecture
3. Construction
4. Test
5. Evolution

10

Self-organizing Pipelines

• adapt easily to changes
• Robust to unknown events

• In Software Engineering Terms
• Adapt: flexiable & extensible
• Robust: robust resilient

• “smart”

11

Commit Stage

12

release

commit

compile unit tests analysis

Activities inside a pipeline

13

compile binarycode

unit testsbinary
report

binary

Transformation

Assessment

Decision Gate

quality gate

artifact
binary

report

policy

14

transform

assess

assess

quality gate

report 1

git

artifact 1

….

artifact 2

transform

assess

quality gate

artifact n-1

report m-1

artifact 2

policy config compliance

Ar
tif

ac
t L

ev
el

As
se

ss
m

en
t L

ev
el

En
v L

ev
el

• Minimal pipeline: only transformations
• External Information: policies and configuration

• Order of transformations depends on the artifacts

Pipeline Description Languages - PDL

• Lot’s of different models & DSLs

• Imperative/declarative style

• Separate pipeline models from pipeline execution

15

…

Can a pipeline model be derived,
generated and adapted by the
system itself?

Beyond Tellerrand

• Netflix Spinnaker:
• microservices for deployment

orchestration

• Pivotal Concourse
• Isolated execution in Docker
• Declarative simplified model

• Gitlab CI
• Declarative DSL
• Individual Runner

17

18

Domain Driven Design

19

Domain Model

20

Pipeline DSL

21

assessments:
- name: java-loc

activityRef: file-linecount
dependsOn:
- alias: repo
ref: p://this/transformations/checkout

configuration:
files: "@repo"
filter: "*.java"

stages:
- name: CleanCode
transformations:
- checkout

transformations:
- name: checkout

activityRef: git-checkout
configuration:
repositoryUri: https://github.com/...

qualityGates:
strategy: auto
policy:
- name: AvgJavaFileLength
interpretation: threshold
assessmentRef:

p://this/assessments/java-loc
valueRef: avgLines
value: 300

Core Planning Process

22

Transformation Planner
Selection

Planner
Execution

Planner
Optimization

• Transformation: M2M from arbitrary PDL
• Selection: Which planner to use ?

• Model level: specified activities & artifacts
• Project level: use project data to plan (i.e. maven)

• Execution: derive order of transformations and assign
assessments and gates

• Optimization: transform into an optimized equivalent model

Simplify model by automatic mapping

23

Prototype

24

Applying Microservices Architectual Style

25

Case Study

• Real industry project: API Gateway
• Tech: Java EE, Database, Keycloak
• Tools: JMeter, Docker

• Assessment Focus: Coverage & Performance

• Objective:
• Is this approach applicable?
• What is the impact of self-organization?

26

27

Some preliminary results

28

296 sec

37/65/96 sec
up 70% faster

Total
execution time

Defect seeding
commit stage

311 sec

115 sec

Pipeline Modelling

• Modeling “Power”
• Idea: increase ease of use
• Automatic Planning

29

External
Pipeline Model

Pipeline
Planner

Internal
Pipeline Model

Collaboration & Platforms

• Tool: CodeFlow
• Homegrown Code Review
• Toolbuilder culture

• Platform: Tricorder
• Ecosystem of Quality

Measurement Tools

30

31

Future Work

• Integrate more pipeline models:
• currently BPMN (manual approval)

• Make the Pipeline smarter
• More built-in analytics
• Learn from build history

• Test selection
• Test prioritization
• Artifact decomposition

• Learn from operation data
• Recommend assessment

• Validate pipeline against policies
• Missing assessments

• Re-plan during execution

32

33

34

A pipeline is a core/shared software project
of each software organization!

Breakout Groups

• Pipeline Design and Optimization
• DevOps-Supporting Architectures – Only Microservices?
• Challenges for Continuous Delivery in IoT
• Software Complexity – Metrics of Software Landscapes with

DevOps

35

36

Communities interested in DevOps

37

Working Group
Microservices & DevOps

ak-msdo.gi.de
22/23.3.2018 Aachen

3rd Workshop on CSE
Submission: 10.1.2018

