
Continuous Architecting Demystified!
Vienna Software Seminar ‘17

Damian A. Tamburri
Technical University Eindhoven and

Jeronimus Academy of Data Science (NL)

1

B.Sc.
Formal Languages
and Methods for
Software Analysis,
Design and Testing

Junior Sw. Eng.
Architecture Recovery and
Roundtrip Engineering

My Wheel of Life

- 2 -

- 3 -

Mission Accomplished*!

That was a lot of hair ago...

- 4 -

B.Sc.
Formal Languages
and Methods for
Software Analysis,
Design and Testing

Junior Sw. Eng.
Architecture Recovery and
Roundtrip Engineering

M.Sc.
Formal Software Architecture
Representation and Reasoning

M.Sc.
Global Software
Engineering

Ph.D.
Information Mgmt. &
Software Engineering

Research Fellowship
Advanced Software
Architectures for Big Data

- 5 -

B.Sc.
Formal Languages
and Methods for
Software Analysis,
Design and Testing

Junior Sw. Eng.
Architecture Recovery and
Roundtrip Engineering

M.Sc.
Formal Software Architecture
Representation and Reasoning

M.Sc.
Global Software
Engineering

Ph.D.
Information Mgmt. &
Software Engineering

Research Fellowship
Advanced Software
Architectures for Big Data

Assistant Professor
Socio-Technical
Intelligence

Currently:

- 6 -

B.Sc.
Formal Languages
and Methods for
Software Analysis,
Design and Testing

Junior Sw. Eng.
Architecture Recovery and
Roundtrip Engineering

M.Sc.
Formal Software Architecture
Representation and Reasoning

M.Sc.
Global Software
Engineering

Ph.D.
Information Mgmt. &
Software Engineering

Research Fellowship
Advanced Software
Architectures for Big Data

Hot Topic for Today!

  Continuous Architecting!

7

Hot Topic for Today!

  Continuous Architecting!
  “Say What???????”

8

Not something I, or EU DICE
invented...

9

Let’s check the status of your
face...

  Continuous Architecting!
  “Say What???????”

10

My Face when I heard of it...

  Continuous Architecting!
  “Say What???????”

11

Hot Topic for Today!

  Continuous Architecting!

12

SAs Before… SAs After!

Hot Topic for Today!

  Software Architectures

13

SAs Before…

  Set of design decisions;
  Assessed before starting

implementation, then changed
during lifecycle;

  Documented;
  ...

Hot Topic for Today!

14

SAs Before…

  Continuous Architecting!
  Architecture Decisions are
not taken, they *emerge* in
a *data-driven* fashion;

  Decision-Making is “Just-in-
time”, only where and when
extremely needed;

  Make everything as a
product, leveraging the
small (Microservices);

  …

Hot Topic for Today!

  “Say What???????”

15

My Face when I heard of it...

  Continuous Architecting!
  “Say What???????”

16

But first... A bit of history!

  Let’s take a step back to where it all began...

17

It’s 2013...

  And...

18

It’s 2013...

  And...

19

It’s 2013...

  And...

20

Meanwhile in Software Engineering...
Top failure causes*

l  Unrealistic deadlines, e.g., imposed by someone external to
the technical staff

l  Requirements & people change (too) often
l  Effort and resources have been estimated in an overly

optimistic way,
l  Risks have not been taken into account from the start of the

project.
l  Risks can be technical or human difficulties

l  Communication problems among staff members
l  Difficulty by the management to recognize recurrent delays

and take immediate action
l  Subversive stakeholders

- 21 -
*Gartner Report 2013

l  Unrealistic deadlines, e.g., imposed by someone external
to the technical staff

l  Requirements & people change (too) often
l  Effort and resources have been estimated in an overly

optimistic way,
l  Risks have not been taken into account from the start of the

project.
l  Risks can be technical or human difficulties

l  Communication problems among staff members
l  Difficulty by the management to recognize recurrent delays

and take immediate action
l  Subversive stakeholders

- 22 -
*Gartner Report 2013

Meanwhile in Software Engineering...
Top failure causes* - An Example!

(UNFORESEEN) OVERHEAD COST: 174,000,000 $ (give or take)*

- 23 -
*http://www.cio.com/article/2380827/developer/6-software-
development-lessons-from-healthcare-gov-s-failed-launch.html

Meanwhile in Software Engineering...
Top failure causes* - An Example!

“DevOps is a set of practices
intended to reduce the time
between committing a change to a
system and the change being placed
into normal production, while
ensuring high quality.”

L. Bass et Al. [11]

What is DevOps?

- 24 -

“DevOps is a set of practices
intended to reduce the time
between committing a change to a
system and the change being placed
into normal production, while
ensuring high quality.”

L. Bass et Al. [11]

What is DevOps?

- 25 -

DevOps Practices

Acceleration

Waste-Reduction

Omniscience

DevOps Practices: Let’s take a look

  Acceleration Tactics
  Use Faster Organization: Merge Dev+Ops Teams…
  Infrastructure-as-Code
  Use Continuous Integration Tools
  Use Continuous Deployment Tools
  Use Continuous Testing Tools
  …

  Waste Reduction Tactics

  Canary Testing
  A/B Testing
  Reduce Documentation
  Minimalistic Architecting è Microservices
  …

26

DevOps Practices: Let’s take a look

  Omniscience Tactics

  Monitor Everything
  Monitoring-as-a-service
  On-The-Fly Risk Engineering

  ...

27

DevOps Practices: Let’s take a look

  Omniscience Tactics

  Monitor Everything
  Monitoring-as-a-service
  On-The-Fly Risk Engineering
  Continuous Architecting!

  ...

28

Continuous Architecting Explained

  Software Architecture responds to architecture
drivers... So... “Just” upgrade the drivers for DevOps!

  Design for Modifiability
  Design for Observability
  Design for Organisability
  Design for Fast Evolution & Testability
  Design for High Scalability

29

 but… most of all…

Continuous Architecting Explained

  Software Architecture responds to architecture
drivers... So... “Just” upgrade the drivers for DevOps!

  Design for Modifiability
  Design for Observability
  Design for Organisability
  Design for Fast Evolution & Testability
  Design for High Scalability

  Design for SA failure!
  SA is incremental, refined from a rough draft via
neverending continuous architectural improvement!

30

 but… most of all…

Continuous Architecting In
Context

31

Dev Goal: “Prepare a Software
Architecture designed to be
immediately deployable”

Ops Goal: “Observe the
architecture runtime and
provide Ops feedback to Dev…
then improve architecture
continuously”

DevOps processes and toolchain:
Putting it all together...

32
Image by Kharnagy (Own work) [CC BY-SA 4.0
(http://creativecommons.org/licenses/by-sa/4.0)],
via Wikimedia Commons

- Continuous
Architecting
Def. “architect for test, build and deploy,
take quality attributes into account, take
advantage of feedback from runtime” [1]

- Continuous
Integration
Def. “merge all developer
work-copies to a shared mainline
frequently” [4]
Examples. Apache Jenkins, Hudson, etc.

- Continuous
Testing Def. “run tests as part the build pipeline so that

every check-in and deployment is validated” [3]
Examples. Selenium+GitHub+LI-API, etc. …

Continuous Architecting: How?

  Bass et Al. ‘15 [11]:
  Ops Shift-Left – “design the SA to cater for
continuous deployment, using Infrastructure Design
Patterns, IasC, …”

Erder & Murat ‘16 [1]
  Architecture-Driven Organisation – “Design
Architecture for DevOps then organise to match it”

  Just-In-Time SA Decision-Making – “Delay design
decisions until they are absolutely necessary”

33

Hold on a second... Hasn’t
anyone said this already!?

34

  Bass et Al. ‘15 [11]:
  Ops Shift-Left – “design the SA to cater for
continuous deployment, using Infrastructure Design
Patterns, IasC, …”

Erder & Murat ‘16 [1]
  Architecture-Driven Organisation – “Design
Architecture for DevOps then organise to match it”

  Just-In-Time SA Decision-Making – “Delay design
decisions until they are absolutely necessary”

Continuous Architecting: How?

  Bass et Al. [11]:
  Ops Shift-Left – “design the SA to cater for
continuous deployment, using Infrastructure Design
Patterns, IasC, …”

Erder & Murat [1]
  Architecture-Driven Organisation – “Design
Architecture for DevOps then organise to match it”

  Just-In-Time SA Decision-Making – “Delay design
decisions until they are absolutely necessary”

  Van Vliet et al. [8] 2004!
  Architecture-Level Modifiability Analysis (ALMA) –
“measure modifiability, (re-)architect to improve it”

35

…

What changes?

  Now it’s cool!

36

And most importantly…

What changes?

  Now it’s cool!

  Speed!

37

And most importantly…

Conclusions (1)

  New architecture drivers:

  Modifiability
  Observability
Organisability

  Speed
  Failure
  …

38

Conclusions (1)

  “New” architecture drivers:

  Modifiability
Organisability

  Actually New:
  Observability
  Speed
  Failure
  …

39

Conclusions (1)

  New architecture drivers:

  Modifiability
  Observability
Organisability

  Speed
  Failure
  …

  Continuous Architecting – “more of the same, only
faster”

40

Conclusions & Future Work (2)

  What we miss, architecturally:

  A better connection between the design of software,
the design of the infrastructure, and the design of the
organization;

  A precise and rigorous comparison approach between
the new languages and tools for coding
infrastructures;

  Metrics to track and evaluate all of the above;

41

Conclusions & Future Work (3)

  Who is the Architect?
  Anyone who enables Continuous-*
  Anyone who enables an Agile Organisation
  Anyone who enables for new Arch. Drivers’ equivalent
metrics (e.g., Observability, Modifiability)

  So… The architect is a Community Shepherd à but it
can be anyone

42

“The Architect is my Shepherd […]”

Any Questions?

- 43 -

That’s all folks!

References

[1] Erder, Murat and Pureur, Pierre. Continuous Architecture: Sustainable Architecture in
an Agile and Cloud-Centric World. Amsterdam: Morgan Kaufmann, 2016.
[2] Continuous Testing Paperback – January 2, 2014 by W. Ariola, C. Dunlop
[3] Part of the Pipeline: Why Continuous Testing Is Essential, by Adam Auerbach, TechWell
Insights August 2015
[4] M. Fowler Continuous Integration,
https://www.thoughtworks.com/continuous-integration
[5] Chen, Lianping (2015) "Continuous Delivery: Huge Benefits, but Challenges Too” IEEE
Software. 32 (2): 50.
[6] http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd03/TOSCA-
Simple-Profile-YAML-v1.0-csd03.html
[7] P. Lipton, D. Palma, M. Rutkowski, and D. A. Tamburri, “Tosca solves big problems in
the cloud and beyond!” IEEE Cloud, vol. 21, no. 11, pp. 31–39, 2016.
[8] Bengtsson, PerOlof, Lassing, Nico, Bosch, Jan and van Vliet, Hans. "Architecture-level
modifiability analysis (ALMA)." Journal of Systems and Software 69 , no. 1--2 (2004):
129--147.
[9] Tamburri, D. A.; Lago, P. & van Vliet, H. (2013), 'Uncovering Latent Social Communities
in Software Development.', IEEE Software 30 (1) , 29-36 .
[10] M. Di Penta, D. A. Tamburri, Combining Quantitative and Qualitative Methods in
Empirical Software Engineering Proceedings of the 10th Joint Meeting of the European
Software Engineering Conference and the ACM Sigsoft Symposium of the Foundations of
Software

 44

Other Biblio

[11] Bass, L. J.; Weber, I. M. & Zhu, L. (2015), DevOps - A Software Architect's
Perspective. , Addison-Wesley .
[12] Tamburri, D. A. & Nitto, E. D. (2015), When Software Architecture Leads to
Social Debt., in Len Bass; Patricia Lago & Philippe Kruchten, ed., 'WICSA' , IEEE
Computer Society, pp. 61-64 .
[13] Tamburri, D. A.; Kruchten, P.; Lago, P. & van Vliet, H. (2015), 'Social debt in
software engineering: insights from industry.', J. Internet Services and
Applications 6 (1) , 10:1-10:17 .
[14] Tamburri, D. A.; Lago, P. & van Vliet, H. (2013), 'Organizational social
structures for software engineering.', ACM Comput. Surv. 46 (1) , 3 .

- 45 -

