Architecture and DevOps

M. Ali Babar

CREST - Centre for Research on Engineering Software Technologies
University of Adelaide, Australia

Architecture-Centric Research for Software Services

¥ New Product,
Context, &
Constraints

Quality Attributes
Rationale and

Reasoning Knowledge

Requirements /
Features

Architectural
Core Assets

roble

Problem-Centred Zroﬁ_‘;‘:tt Architectural
Process Support Architecture Engineering

Development and
Operations (DevOps)

Design &
Implementatio

The Key Areas of the Current Projects

Science of Cyber Security

e Methods and tools for evidence synthesis and evaluation

e Mining Software Repositories for security knowledge

e Field Studies for developing and deploying secure Software
using DevOps paradigm and tools

Resilient Architectures for Cloudlet/Edge computing

¢ Building and leveraging resilient architectures for Cloud
systems, Internet of Things (loT) and Fog Computing

e Formal qualitative and quantitative resilience metrics
development and evaluation

Cyber Security CRC — Program Structure

pescription

1 Critical
Infrastructure
Protection

2 Cyber
Security
Solutions as
a Service

Mitigating threats
from nation states,
criminals, and other
human use factors

Ensuring solutions
that are scalable,
broadly applicable,
and leverage
machine learning
techniques to
ensure process
improvement

1.1 Resilient Networks

1.2 Security &
configuration management
of loT systems

1.3 Development of a
national authentication
system

1.4 Forensics and
responses to emerging
threats

2.1 Platform and
architecture for cyber
security as a service

2.2 Security automation
and orchestration

2.3 Privacy preserving data
sharing in a
hyperconnected world

2.4 Real time monitoring of
cyber threats

Develop new techniques and technologies for: reliably capturing and filtering high-
speed, high-volume network traffic; detecting and diagnosing anomalies in such traffic;
remotely interrogating the configuration of “rogue” devices; providing standardised data
sets for testing new network protection technologies; incorporating cryptographic and
authentication solutions into control networks; and on-the-fly verification of data
integrity and authenticity

The project will provide risk assessment, evaluate new threats, and develop new
platforms/technologies to provide secure deployment and management of Lg/]’/loE, end
user networked devices and machine-machine (M2M) networks anywhere/anytime.

This project will develop a national authentication system that can be used in an e-
government context or commercial situation. The system will enhance privacy and trust
for Australians by building on existing national systems used in other countries, e.g.
Estonia, New Zealand.

Produce systems to ensure forensic level traceability of cyber security incidents,
including across systems of systems as represented in many critical infrastructures. The
project’s outcomes will use Al principles to generate operational efficiencies through

Aron - o arn on N o aa - ata¥~ an

This project will provide a secure integrated platform for providing security as a service.
The platform will be based on a reference architecture designed and evaluated using
security-by design paradigm

Security automation and orchestration have become imperative. This project aims to
provide advanced technologies for security orchestration by developing self-adaptation
and self-healing tools that can be provisioned as SaaS

Data processing for security needs, access to and analysis of fine-grained data without
compromising privacy. This project will provide enabling knowledge and tools for privacy
preserved analysis of data for security

Produces a system of systems that through fusion of advanced real time monitoring of
cyber security threats enables situational awareness of cyber threat and risk through
advanced visualisation techniques

Evidence-Based Approach to Exploring the
Relation between Architecture and
DevOps Paradigm

(Re)-Architecting for DevOps

e (Re-) architecting to enable continuous delivery and deployment?

— Three challenges: highly coupled monolithic architecture, team
dependencies, and ever-changing and complex environments.

— Six principles: small and independent deployment units, not too much
focus on reusability, aggregating logs, supporting frequent and
incremental changes, design for failure, and testability inside an
architecture.

— Autonomy and decomposition strategies: deployability, modifiability,
testability, scalability, and team-scale

e Designing highly operaionalised architectures: prioritise operational
concerns early, continuously engage with the operations staff, and
leverage logs and metric data for operational tasks.

(Re)-Architecting for DevOps

e Contributions of the research so far!

— A better understanding of practicing CD within monoliths and identifies a list of
reasons for disruptions to CD adoption within the monoliths by exploring the
practitioners’ perceptions;

— A characterization of “small and independent deployment units” principle
attempted by the participants to ease a CD journey;

— A set of quality attributes that require more attention when designing an
application in CD context;

— An empirical evidence about the perceived benefits of addressing operational
aspects during architecting phase of an operations-friendly architecture;

— A catalogue of findings about architecting for CD that can be used as guidance
for further research effort and provide concrete recommendations for better
practices and tools development.

Findings From Surveyed Questions

-
ArETIONER 8T ~u
e ST ~

_aame p. -

Continuous Delivery vs. Deployment in practice

4 N

Finding 1: From a practitioner’s perspective, continuous delivery and continuous deployment are
indeed distinguishable practices in industry.

53
37
31 31
26
17 19
11
7
— .
Multiple times a day Once a day A few times a week A few times a month A few times a year N/A

B On average, how often your applications are in releasable state?

On average, how often do you deploy your applications to production?

Monoliths and CD

Finding 2: Monoliths and CD are not intrinsically oxymoron.

Finding 3: Adopting CD in monoliths is more difficult, as there are hurdles for having team
autonomy, fast and quick feedback, enabling automation (e.g., test automation) and scalable
deployment.

Possibility of practlplng C]% in "monolithic 60% - 19% I 21%
applications

® Strongly agree Agree Neutral Disagree ® Strongly disagree

Monoliths and CD

N
Finding 4: Breaking down monoliths into smaller pieces brings more flexibility in CD;
however, the participants experienced it as challenging process.
J
N

Finding 5: Inflexibility of organizational structure (e.g., team structure) with the spirit of CD
1s the most critical challenge for implementing CD.

Difficulty of splitting a (monolithic) application 67% _ 15% . 18%
Huge dependencies ?;1;1 Hclg;)rr;hnatlon among team 0% _ 20% . 10%
Inflexibility of the organization’s structure with CD 69% _ 19% - 12%

B Very important Important Moderately important Of little importance B Unimportant

Moving Beyond Monoliths

Finding 6: “Small and independent deployment units” is a key principle, which is widely
used as an alternative to monoliths, and serves as a foundation to design CD-driven
architectures.

Finding 7: Autonomy in terms of deployability, modifiability, testability, scalability, and
isolation of business domain are the main characteristics of this principle.

Finding 8: Adopting microservices to promote delivery speed comes at a cost as it
necessitates considering organizational structures and highly skilled team. Ignoring this fact
may negatively impact the deployment capability of an organization.

Quality Attributes that Matter in CD

Deployability
Testability
Modifiability
Monitorability/Loggability
Resilience
Reusability

Deployability

Finding 9: Concerns about deployability impact how applications are designed, however
interactions among components/services are most influenced by deployability.

Deployability impacts design of individual classes 239%,

Deployability impacts design of individual

0
components/services 70%

Deployability impacts design of interactions among

. 67%
components/services

Deployability impacts design of the entire application 63%

Sacrifice performance, security, etc. to improve

0
deployability 2%

Consider operational aspects during design phase 84%,

B Almost Always

Often

37%

Sometimes

20% 10%
25% &%
25% l 12%

Quality Attributes that Matters (Largely/Less)

p
Finding 10: The importance of monitorability, loggability and resilience has increased, but
overthinking about “reusability” at architecture level may negatively impact CD adoption.

~

- /
4 N
Finding 11: Compared to less frequent release, CD more emphasizes on evolutionarily
changes. This requires delaying architectural decisions to the last possible moment.

\ /
In CD, architectural decisions are made as late as possible 65% _ 16% - 19%

CD adoption increases the need for for monitoring 829 . 9% W 9%
CD adoption increases the need for logging 76% (. 16% W%
For CD, Domain Driven Design and Bounded Context are.. 9% I 33% M 8%
CD adoption increases the need for resilience 80% 12% Hs%
Overthinking on reusability at architecture level hinders CD.. A3% i 29% B 29%

® Strongly agree Agree Neutral Disagree m Strongly disagree

Operation Aspects and Architecture

Finding 12: Considering operational aspects early in software development process would
help design and implement operations-friendly architectures.

Finding 13: CD can expand architect’s role as apart from software design they need to deal
with infrastructure architecture, test architecture and automation.

Operations team’s concerns still have less priority than other 42% - 30% -29%
stakeholders

B Strongly agree Agree Neutral Disagree B Strongly disagree

Operational aspects impact on our architecture design decisions

Acknowledgement

e The empirical study is the part of Mojtaba Shahin PhD research

e The Cyber Security CRC program has multiple academic and dozens of
industrial and governmental agencies

Thank You!

Questions

