
Architecture and DevOps

M. Ali Babar

CREST – Centre for Research on Engineering Software Technologies
University of Adelaide, Australia



2

New	Product,	
Context,	&	
Constraints

Requirements	/	
Features

Architectural	
Core	Assets

Problem-Centred	
Process	Support

Problem-Centred	
Product	
Architecture
Design	&	
Implementation

Rationale	and	
Reasoning	Knowledge

Software	
Architecture

Architectural	
Engineering

Quality	Attributes

Development	and	
Operations	(DevOps)

Architecture-Centric Research for Software Services



The Key Areas of the Current Projects
Science	of	Cyber	Security
• Methods	and	tools	for	evidence	synthesis	and	evaluation
• Mining	Software	Repositories	for	security	knowledge
• Field	Studies	for	developing	and	deploying	secure	Software	
using	DevOps	paradigm	and	tools

Secure	and	Scalable	Private	Cloud	Infrastructures
• Design	and	implementation	of	secure	private	cloud
• Semi-automated	configuration	of	tools/	pipelines
• Integration	and	testing	of	Docker,	kubernetes,	rkt,	and	LXD	
for	secure	private	cloud	deployments

Resilient	Architectures	for	Cloudlet/Edge	computing
• Building	and	leveraging	resilient	architectures	for	Cloud	
systems,	Internet	of	Things	(IoT)	and	Fog	Computing

• Formal	qualitative	and	quantitative	resilience	metrics	
development	and	evaluation

Data	Exfiltration	and	Security	Orchestration
• Strategies	for	uncovering	software	flaws	for	data	exfiltration
• Designing	and	deploying	adaptive	countermeasures
• Architectural	support	for	automatic	security	orchestration



4

Requirements	/	
Features

Architectural	
Core	Assets

Problem-Centred	
Process	Support

Cyber Security CRC – Program Structure



Evidence-Based	Approach	to	Exploring	the	
Relation	between	Architecture	and	

DevOps	Paradigm



(Re)-Architecting for DevOps

• (Re-)	architecting	to	enable	continuous	delivery	and	deployment?
– Three	challenges:	highly	coupled	monolithic	architecture,	team	

dependencies,	and	ever-changing	and	complex	environments.	

– Six	principles:	small	and	independent	deployment	units,	not	too	much	
focus	on	reusability,	aggregating	logs,	supporting	frequent	and	
incremental	changes,	design for failure,	and	testability inside an
architecture.

– Autonomy	and	decomposition	strategies:	deployability,	modifiability,	
testability,	scalability, and	team-scale

• Designing	highly	operaionalised architectures:	prioritise operational	
concerns early,	continuously	engage	with	the	operations	staff,	and	
leverage	logs	and	metric	data	for	operational	tasks.	



(Re)-Architecting for DevOps

• Contributions	of	the	research	so	far!

– A	better	understanding	of	practicing	CD	within	monoliths	and	identifies	a	list	of	
reasons	for	disruptions	to	CD	adoption	within	the	monoliths	by	exploring	the	
practitioners’	perceptions;

– A	characterization	of	“small	and	independent	deployment	units”	principle	
attempted	by	the	participants	to	ease	a	CD	journey;

– A	set	of	quality	attributes	that	require	more	attention	when	designing	an	
application	in	CD	context;

– An	empirical	evidence	about	the	perceived	benefits	of	addressing	operational	
aspects	during	architecting	phase	of	an	operations-friendly	architecture;

– A	catalogue	of	findings	about	architecting	for	CD	that	can	be	used	as	guidance	
for	further	research	effort	and	provide	concrete	recommendations	for	better	
practices	and	tools	development.



Findings	From	Surveyed	Questions



Continuous Delivery vs. Deployment in practice

53

11

31

19

2 3

26

17

31

37

7

1

Multiple times a day Once a day A few times a week A few times a month A few times a year N/A

On average, how often your applications are in releasable state?

On average, how often do you deploy your applications to production?

Finding 1: From a practitioner’s perspective, continuous delivery and continuous deployment are 
indeed distinguishable practices in industry.



Monoliths and CD

60% 19% 21%Possibility of practicing CD in "monolithic 
applications"

Strongly agree Agree Neutral Disagree Strongly disagree

Finding 2: Monoliths and CD are not intrinsically oxymoron.

Finding 3: Adopting CD in monoliths is more difficult, as there are hurdles for having team 
autonomy, fast and quick feedback, enabling automation (e.g., test automation) and scalable

deployment.



Monoliths and CD

Finding 4: Breaking down monoliths into smaller pieces brings more flexibility in CD; 
however, the participants experienced it as challenging process.

Finding 5: Inflexibility of organizational structure (e.g., team structure) with the spirit of CD 
is the most critical challenge for implementing CD.

69%

70%

67%

19%

20%

15%

12%

10%

18%

Inflexibility of the organization’s structure with CD

Huge dependencies and coordination among team 
members

Difficulty of splitting a (monolithic) application

Very important Important Moderately important Of little importance Unimportant



Moving Beyond Monoliths

Finding 6: “Small and independent deployment units” is a key principle, which is widely 
used as an alternative to monoliths, and serves as a foundation to design CD-driven 

architectures.

Finding 7: Autonomy in terms of deployability, modifiability, testability, scalability, and 
isolation of business domain are the main characteristics of this principle.

Finding 8: Adopting microservices to promote delivery speed comes at a cost as it 
necessitates considering organizational structures and highly skilled team. Ignoring this fact 

may negatively impact the deployment capability of an organization.



Quality Attributes that Matter in CD

Deployability
Testability

Modifiability
Monitorability/Loggability

Resilience
Reusability



Deployability

Finding 9: Concerns about deployability impact how applications are designed, however 
interactions among components/services are most influenced by deployability.

84%

2%

63%

67%

70%

23%

11%

25%

25%

20%

37%

5%

68%

12%

8%

10%

40%

Consider operational aspects during design phase

Sacrifice performance, security, etc. to improve 
deployability

Deployability impacts design of the entire application

Deployability impacts design of interactions among 
components/services

Deployability impacts design of individual 
components/services

Deployability impacts design of individual classes

Almost Always Often Sometimes Rarely Never



Quality Attributes that Matters (Largely/Less)

Finding 10: The importance of monitorability, loggability and resilience has increased, but 
overthinking about “reusability” at architecture level may negatively impact CD adoption.

43%

80%

59%

76%

82%

65%

29%

12%

33%

16%

9%

16%

29%

8%

8%

8%

9%

19%

Overthinking on reusability at architecture level hinders CD …

CD adoption increases the need for resilience

For CD, Domain Driven Design and Bounded Context are …

CD adoption increases the need for logging

CD adoption increases the need for for monitoring 

In CD, architectural decisions are made as late as possible

Strongly agree Agree Neutral Disagree Strongly disagree

Finding 11: Compared to less frequent release, CD more emphasizes on evolutionarily 
changes. This requires delaying architectural decisions to the last possible moment.



Operation Aspects and Architecture

84%

42%

11%

30%

5%

29%

Operational aspects impact on our architecture design decisions

Operations team’s concerns still have less priority than other 
stakeholders

Strongly agree Agree Neutral Disagree Strongly disagree

Finding 13: CD can expand architect’s role as apart from software design they need to deal 
with infrastructure architecture, test architecture and automation.

Finding 12: Considering operational aspects early in software development process would 
help design and implement operations-friendly architectures.



Acknowledgement

• The	empirical	study	is	the	part	of	Mojtaba Shahin PhD	research

• The	Cyber	Security	CRC	program	has	multiple	academic	and	dozens	of	
industrial	and	governmental	agencies



Thank You!

Questions


