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Context – the state of the Cloud

› Cloud as the de facto platform for software

› Early confusion resolved by NIST SP 800-145

› Multiple (similar) offerings by the #Stacks
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Related movements

› Movement #1: DevOps

• CD/CI frameworks + deployment automation tools = 
shortened dev cycle + agile practices

• OS-level virtualization a la Docker -> applications as 
independent software stacks

› Movement #2: Microservices

• Loosely coupled component lifecycles
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Key message

› Software development in practice has changed, 
software engineering (research) should do the same

› Scoping: Cloud-based applications, i.e. both cloud-
enabled and cloud-native
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Def: Cloud-based applications (CBAs) are 
applications that rely on one or more cloud 
services in order to be able to deliver their 
functionality to their users



Challenges for CBA Engineering
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Requirements on the solution space

1. CBA engineering should 
incorporate service-
orientation concepts like 
composition

2. System design should be 
based on evolving 
dynamic topologies

3. Self-* characteristics are 
essential in dealing with 
provider-induced 
variability

4. Awareness of consumed 
resources should be 
enabled for both 
development and 
operation
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The S-Cube SBA Reference Lifecycle
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http://s-cube-network.eu/



The proposed CBA lifecycle
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Phases of the CBA lifecycle in a nutshell
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Principles of CBA engineering (proposal)

#1: Architectural decisions are informed by cost at scale

#2: Transitioning between viable topologies should be fast 
and easy

#3: No need for separation between design and run time 
anymore

#4: Optimizing for a noisy environment is sub-optimal and 
potentially unnecessary
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Conclusions

Reach me at:

v.andrikopoulos@rug.nl

https://vandriko.github.io

@v_andrikopoulos
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› Adoption of cloud computing + 
DevOps (incl. virtualization) + 
microservices → need for new take 
on CBA engineering

› CBA lifecycle as interconnected 
loops

› Open issues
• Security
• QA

› Future work
• Tooling
• Validation
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