
Cloud-based Applications 
Engineering Principles

Vasilios Andrikopoulos

VSS 2017
On the relation of Software Architecture and 

DevOps/Continuous Delivery

19-Dec-17 | 1



Context – the state of the Cloud

› Cloud as the de facto platform for software

› Early confusion resolved by NIST SP 800-145

› Multiple (similar) offerings by the #Stacks

19-Dec-17 | 2



Related movements

› Movement #1: DevOps

• CD/CI frameworks + deployment automation tools = 
shortened dev cycle + agile practices

• OS-level virtualization a la Docker -> applications as 
independent software stacks

› Movement #2: Microservices

• Loosely coupled component lifecycles

19-Dec-17 | 3



Key message

› Software development in practice has changed, 
software engineering (research) should do the same

› Scoping: Cloud-based applications, i.e. both cloud-
enabled and cloud-native

19-Dec-17 | 4

Def: Cloud-based applications (CBAs) are 
applications that rely on one or more cloud 
services in order to be able to deliver their 
functionality to their users



Challenges for CBA Engineering

19-Dec-17 | 5



Requirements on the solution space

1. CBA engineering should 
incorporate service-
orientation concepts like 
composition

2. System design should be 
based on evolving 
dynamic topologies

3. Self-* characteristics are 
essential in dealing with 
provider-induced 
variability

4. Awareness of consumed 
resources should be 
enabled for both 
development and 
operation

19-Dec-17 | 6



The S-Cube SBA Reference Lifecycle

19-Dec-17 | 7

http://s-cube-network.eu/



The proposed CBA lifecycle

19-Dec-17 | 8

1 2

3



Phases of the CBA lifecycle in a nutshell

19-Dec-17 | 9

M

A

P

E K

Identify
Services

Service
Portfolio

Decompose into 
Architecture

a-Topology

Generate 
Alternative

Viable 
Topology

Deploy & 
Operate

M

A

P

E K

M

A

P

E K
M

A

P

E K

Service 
Identification

Service 
Decomposition

Topology 
Generation

Deployment & 
Operation



Principles of CBA engineering (proposal)

#1: Architectural decisions are informed by cost at scale

#2: Transitioning between viable topologies should be fast 
and easy

#3: No need for separation between design and run time 
anymore

#4: Optimizing for a noisy environment is sub-optimal and 
potentially unnecessary

19-Dec-17 | 10



Principles of CBA engineering (proposal)

#1: Architectural decisions are informed by cost at scale

#2: Transitioning between viable topologies should be fast 
and easy

#3: No need for separation between design and run time 
anymore

#4: Optimizing for a noisy environment is sub-optimal and 
potentially unnecessary

19-Dec-17 | 11



Principles of CBA engineering (proposal)

#1: Architectural decisions are informed by cost at scale

#2: Transitioning between viable topologies should be fast 
and easy

#3: No need for separation between design and run time 
anymore

#4: Optimizing for a noisy environment is sub-optimal and 
potentially unnecessary

19-Dec-17 | 12



Principles of CBA engineering (proposal)

#1: Architectural decisions are informed by cost at scale

#2: Transitioning between viable topologies should be fast 
and easy

#3: No need for separation between design and run time 
anymore

#4: Optimizing for a noisy environment is sub-optimal and 
potentially unnecessary

19-Dec-17 | 13



Principles of CBA engineering (proposal)

#1: Architectural decisions are informed by cost at scale

#2: Transitioning between viable topologies should be fast 
and easy

#3: No need for separation between design and run time 
anymore

#4: Optimizing for a noisy environment is sub-optimal and 
potentially unnecessary

19-Dec-17 | 14



Conclusions

Reach me at:

v.andrikopoulos@rug.nl

https://vandriko.github.io

@v_andrikopoulos

19-Dec-17 | 15

› Adoption of cloud computing + 
DevOps (incl. virtualization) + 
microservices → need for new take 
on CBA engineering

› CBA lifecycle as interconnected 
loops

› Open issues
• Security
• QA

› Future work
• Tooling
• Validation

M

A

P

E K

Identify
Services

Service
Portfolio

Decompose into 
Architecture

a-Topology

Generate 
Alternative

Viable 
Topology

Deploy & 
Operate

M

A

P

E K

M

A

P

E K
M

A

P

E K

Service 
Identification

Service 
Decomposition

Topology 
Generation

Deployment & 
Operation


